Harmonic balance, Melnikov method and nonlinear oscillators under resonant perturbation

M. Bonnin, F. Corinto, M. Gilli, P. Civalleri
{"title":"Harmonic balance, Melnikov method and nonlinear oscillators under resonant perturbation","authors":"M. Bonnin, F. Corinto, M. Gilli, P. Civalleri","doi":"10.1109/ECCTD.2007.4529747","DOIUrl":null,"url":null,"abstract":"The Subharmonic Melnikov's method is a classical tool for the analysis of subharmonic orbits in weakly perturbed nonlinear oscillators, but its application requires the availability of an analytical expression for the periodic trajectories of the unperturbed system. On the other hand, spectral techniques, like the harmonic balance, have been widely applied for the analysis and design of nonlinear oscillators. In this manuscript we show that bifurcations of subharmonic orbits in perturbed systems can be easily detected computing the Melnikov's integral over the harmonic balance approximation of the unperturbed orbits. The proposed method significantly extend the applicability of the Melnikov's method since the orbits of any nonlinear oscillator can be approximated by the harmonic balance technique, and the integrability of the unperturbed system is no more required.","PeriodicalId":445822,"journal":{"name":"2007 18th European Conference on Circuit Theory and Design","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 18th European Conference on Circuit Theory and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD.2007.4529747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

The Subharmonic Melnikov's method is a classical tool for the analysis of subharmonic orbits in weakly perturbed nonlinear oscillators, but its application requires the availability of an analytical expression for the periodic trajectories of the unperturbed system. On the other hand, spectral techniques, like the harmonic balance, have been widely applied for the analysis and design of nonlinear oscillators. In this manuscript we show that bifurcations of subharmonic orbits in perturbed systems can be easily detected computing the Melnikov's integral over the harmonic balance approximation of the unperturbed orbits. The proposed method significantly extend the applicability of the Melnikov's method since the orbits of any nonlinear oscillator can be approximated by the harmonic balance technique, and the integrability of the unperturbed system is no more required.
谐振扰动下的谐波平衡,Melnikov方法和非线性振子
次谐波Melnikov方法是分析弱摄动非线性振子中次谐波轨道的经典工具,但其应用需要得到非摄动系统周期轨迹的解析表达式。另一方面,频谱技术,如谐波平衡,已广泛应用于非线性振荡器的分析和设计。在本文中,我们证明了通过计算非扰动轨道的调和平衡近似上的Melnikov积分,可以很容易地检测到扰动系统中亚调和轨道的分岔。该方法极大地扩展了Melnikov方法的适用性,因为任何非线性振子的轨道都可以用谐波平衡技术逼近,并且不再需要无摄动系统的可积性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信