Specific emitter identification based on Signal-Graph Capsule Network (SGCN)

Tingpeng Li, Zhixi Feng, Bowen Zhang, Shuyuan Yang
{"title":"Specific emitter identification based on Signal-Graph Capsule Network (SGCN)","authors":"Tingpeng Li, Zhixi Feng, Bowen Zhang, Shuyuan Yang","doi":"10.1117/12.2589342","DOIUrl":null,"url":null,"abstract":"As a typical pattern recognition problem, specific emitter identification (SEI) is a crucial step to achieve efficient spectrum sensing. In this work, an emitter identification method based on Signal Graph Capsule Network, which refered as SGCN, is proposed. First, emitter signal is transformed into an undirected graph according to the Euclidean distance from its sampling point, and then take the undirected graph as the input of the network. Second, optimizing the topological structural characteristics by graph convolution operation on this undirected graph. Finally, by introduce the capsule network to improve the generalization ability and enhance the robustness. Extensive analysis and experiments on 30 individual emitters signals demonstrates the attentiveness of the proposed model.","PeriodicalId":415097,"journal":{"name":"International Conference on Signal Processing Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2589342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As a typical pattern recognition problem, specific emitter identification (SEI) is a crucial step to achieve efficient spectrum sensing. In this work, an emitter identification method based on Signal Graph Capsule Network, which refered as SGCN, is proposed. First, emitter signal is transformed into an undirected graph according to the Euclidean distance from its sampling point, and then take the undirected graph as the input of the network. Second, optimizing the topological structural characteristics by graph convolution operation on this undirected graph. Finally, by introduce the capsule network to improve the generalization ability and enhance the robustness. Extensive analysis and experiments on 30 individual emitters signals demonstrates the attentiveness of the proposed model.
基于信号图胶囊网络(SGCN)的特定发射机识别
特定发射器识别是典型的模式识别问题,是实现高效频谱感知的关键步骤。本文提出了一种基于信号图胶囊网络(SGCN)的发射机识别方法。首先,根据发射器信号与其采样点的欧氏距离将其变换成无向图,然后将该无向图作为网络的输入。其次,对该无向图进行图卷积运算,优化拓扑结构特征。最后,通过引入胶囊网络来提高泛化能力,增强鲁棒性。对30个单独发射信号的广泛分析和实验证明了所提出模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信