Daniela Lanz, Jürgen Seiler, Karina Jaskolka, André Kaup
{"title":"Compression of Dynamic Medical CT Data Using Motion Compensated Wavelet Lifting with Denoised Update","authors":"Daniela Lanz, Jürgen Seiler, Karina Jaskolka, André Kaup","doi":"10.1109/PCS.2018.8456262","DOIUrl":null,"url":null,"abstract":"For the lossless compression of dynamic $3-\\mathrm {D}+\\mathrm {t}$ volumes as produced by medical devices like Computed Tomography, various coding schemes can be applied. This paper shows that 3-D subband coding outperforms lossless HEVC coding and additionally provides a scalable representation, which is often required in telemedicine applications. However, the resulting lowpass subband, which shall be used as a downscaled representative of the whole original sequence, contains a lot of ghosting artifacts. This can be alleviated by incorporating motion compensation methods into the subband coder. This results in a high quality lowpass subband but also leads to a lower compression ratio. In order to cope with this, we introduce a new approach for improving the compression efficiency of compensated 3-D wavelet lifting by performing denoising in the update step. We are able to reduce the file size of the lowpass subband by up to 1.64%, while the lowpass subband is still applicable for being used as a downscaled representative of the whole original sequence.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
For the lossless compression of dynamic $3-\mathrm {D}+\mathrm {t}$ volumes as produced by medical devices like Computed Tomography, various coding schemes can be applied. This paper shows that 3-D subband coding outperforms lossless HEVC coding and additionally provides a scalable representation, which is often required in telemedicine applications. However, the resulting lowpass subband, which shall be used as a downscaled representative of the whole original sequence, contains a lot of ghosting artifacts. This can be alleviated by incorporating motion compensation methods into the subband coder. This results in a high quality lowpass subband but also leads to a lower compression ratio. In order to cope with this, we introduce a new approach for improving the compression efficiency of compensated 3-D wavelet lifting by performing denoising in the update step. We are able to reduce the file size of the lowpass subband by up to 1.64%, while the lowpass subband is still applicable for being used as a downscaled representative of the whole original sequence.