Flat Lens Antenna Design Based on Metasurfaces with Printed Elements using Tensor Surface Impedance Model

Y. Tzabari, R. Shavit
{"title":"Flat Lens Antenna Design Based on Metasurfaces with Printed Elements using Tensor Surface Impedance Model","authors":"Y. Tzabari, R. Shavit","doi":"10.1109/comcas52219.2021.9629114","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for surface impedance characterization for a metasurface with printed elements and arbitrary geometry. The modeling of the metasurface as a surface impedance simplifies the entire design cycle of a multilayer metasurface structure and enables analysis using transmission line theory. The proposed method is compared to HFSS simulations and very good agreement was obtained. Using the proposed model, a flat lens antenna based on a multilayer metasurface structure with printed elements that locally corrects the phase has been designed. The performance of the proposed lens in terms of radiation pattern and gain is satisfactory.","PeriodicalId":354885,"journal":{"name":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comcas52219.2021.9629114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel method for surface impedance characterization for a metasurface with printed elements and arbitrary geometry. The modeling of the metasurface as a surface impedance simplifies the entire design cycle of a multilayer metasurface structure and enables analysis using transmission line theory. The proposed method is compared to HFSS simulations and very good agreement was obtained. Using the proposed model, a flat lens antenna based on a multilayer metasurface structure with printed elements that locally corrects the phase has been designed. The performance of the proposed lens in terms of radiation pattern and gain is satisfactory.
基于张量面阻抗模型的平面透镜天线设计
本文提出了一种具有印刷元件和任意几何形状的超表面阻抗表征的新方法。超表面作为表面阻抗的建模简化了多层超表面结构的整个设计周期,并使使用传输线理论进行分析成为可能。将该方法与HFSS仿真进行了比较,得到了很好的一致性。利用该模型,设计了一种基于多层超表面结构的平面透镜天线,该天线具有局部相位校正功能。所提出的透镜在辐射方向图和增益方面的性能令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信