An effective identification between various plant species using shape descriptors and image processing technique

K. Arunkumar, S. Leninisha
{"title":"An effective identification between various plant species using shape descriptors and image processing technique","authors":"K. Arunkumar, S. Leninisha","doi":"10.1109/IConSCEPT57958.2023.10170691","DOIUrl":null,"url":null,"abstract":"A modern agricultural sector requires accurate crop identification and classification. A new computer vision system is presented here that successfully discriminates between various plant species in real time under uncontrolled lighting. Features are vital for image classification and shape descriptors are mainly considered in this study. This system consists of image processing delivering results in real-time and a pixel calculator with more accuracy. Using these components together results in an efficient, reliable system for achieving excellent results in many different situations. Tested on several leaf species taken from the UCI repository. The system successfully detects an average of 87% under different variety of species. Additionally, the system has shown to produce acceptable results even under extremely challenging conditions, such as disease infected leaf or irregular shape leaf. The leaf boundaries was determined and evaluated through Harris corner algorithm. Compared to other high-cost methods, it was observed high species classification and lower testing time for our approach. The researchers also discussed challenges and solutions related to leaf classification, including identifying different leaves, classes of leaf shapes, lighting conditions, and stages of growth.","PeriodicalId":240167,"journal":{"name":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConSCEPT57958.2023.10170691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A modern agricultural sector requires accurate crop identification and classification. A new computer vision system is presented here that successfully discriminates between various plant species in real time under uncontrolled lighting. Features are vital for image classification and shape descriptors are mainly considered in this study. This system consists of image processing delivering results in real-time and a pixel calculator with more accuracy. Using these components together results in an efficient, reliable system for achieving excellent results in many different situations. Tested on several leaf species taken from the UCI repository. The system successfully detects an average of 87% under different variety of species. Additionally, the system has shown to produce acceptable results even under extremely challenging conditions, such as disease infected leaf or irregular shape leaf. The leaf boundaries was determined and evaluated through Harris corner algorithm. Compared to other high-cost methods, it was observed high species classification and lower testing time for our approach. The researchers also discussed challenges and solutions related to leaf classification, including identifying different leaves, classes of leaf shapes, lighting conditions, and stages of growth.
利用形状描述符和图像处理技术对不同植物物种进行有效识别
现代农业部门需要准确的作物识别和分类。本文提出了一种新的计算机视觉系统,该系统能够在不受控光照下实时识别多种植物。特征对图像分类至关重要,本研究主要考虑形状描述符。该系统由实时输出结果的图像处理和精度更高的像素计算器组成。将这些组件一起使用,将形成一个高效、可靠的系统,可在许多不同的情况下获得出色的结果。在UCI知识库中提取的几种叶片上进行了测试。该系统在不同种类下的平均检测成功率为87%。此外,即使在极具挑战性的条件下,如疾病感染的叶片或不规则形状的叶片,该系统也显示出可接受的结果。通过哈里斯角算法确定和评估叶片边界。与其他高成本的方法相比,该方法具有物种分类高、测试时间短等优点。研究人员还讨论了与叶片分类相关的挑战和解决方案,包括识别不同的叶片、叶片形状的类别、光照条件和生长阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信