Real Time Electrocardiogram Annotation with a Long Short Term Memory Neural Network

Federico Corradi, J. Buil, H. D. Cannière, W. Groenendaal, P. Vandervoort
{"title":"Real Time Electrocardiogram Annotation with a Long Short Term Memory Neural Network","authors":"Federico Corradi, J. Buil, H. D. Cannière, W. Groenendaal, P. Vandervoort","doi":"10.1109/BIOCAS.2019.8918723","DOIUrl":null,"url":null,"abstract":"Continuous monitoring of electrocardiogram from wearable devices can enable early detection of heart diseases. Ubiquitous monitoring on wearable electronics requires a novel class of algorithms that are low-power and have low-memory requirements. This work proposes a wearable compatible, and automatic solution for annotating Electrocardiogram (ECG) recordings while maintaining high accuracy of detection when users are carrying daily activities such as sitting, walking, and resting. We validate our solution with two Physionet datasets: the MITDB [1] (Boston’s Beth Israel Hospital and MIT Arrhythmia Database), and the EDB [2] (European ST-T Database). In addition, we validate our method on a newly recorded dataset in collaboration with the ’Ziekenhuis Oost-Limburg’ Hospital1 that has been collected using a prototype wearable device [3]. Our solution exploits a recurrent neural network that achieves an average F1 score of 94.8% over all three datasets. Our solution achieves better generalization performance than the gold standard method Pan Tompkins which achieves an average F1 score of 93%. In addition, our method can be extended to full ECG annotation. We used the QTDB dataset [4] and we report an accuracy of 91.6% while annotating all 5 waves (P-Q-R-S-T) of the ECG complex.","PeriodicalId":222264,"journal":{"name":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2019.8918723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Continuous monitoring of electrocardiogram from wearable devices can enable early detection of heart diseases. Ubiquitous monitoring on wearable electronics requires a novel class of algorithms that are low-power and have low-memory requirements. This work proposes a wearable compatible, and automatic solution for annotating Electrocardiogram (ECG) recordings while maintaining high accuracy of detection when users are carrying daily activities such as sitting, walking, and resting. We validate our solution with two Physionet datasets: the MITDB [1] (Boston’s Beth Israel Hospital and MIT Arrhythmia Database), and the EDB [2] (European ST-T Database). In addition, we validate our method on a newly recorded dataset in collaboration with the ’Ziekenhuis Oost-Limburg’ Hospital1 that has been collected using a prototype wearable device [3]. Our solution exploits a recurrent neural network that achieves an average F1 score of 94.8% over all three datasets. Our solution achieves better generalization performance than the gold standard method Pan Tompkins which achieves an average F1 score of 93%. In addition, our method can be extended to full ECG annotation. We used the QTDB dataset [4] and we report an accuracy of 91.6% while annotating all 5 waves (P-Q-R-S-T) of the ECG complex.
基于长短期记忆神经网络的实时心电图标注
通过可穿戴设备持续监测心电图可以早期发现心脏病。对可穿戴电子设备的无所不在的监控需要一种新型的低功耗、低内存要求的算法。这项工作提出了一种可穿戴兼容的自动解决方案,用于注释心电图(ECG)记录,同时在用户进行日常活动(如坐、走和休息)时保持高精度的检测。我们用两个Physionet数据集验证了我们的解决方案:MITDB[1](波士顿贝斯以色列医院和麻省理工学院心律失常数据库)和EDB[2](欧洲ST-T数据库)。此外,我们在与“Ziekenhuis Oost-Limburg”医院合作的新记录数据集1上验证了我们的方法,该数据集已使用原型可穿戴设备[3]收集。我们的解决方案利用了一个循环神经网络,在所有三个数据集上实现了94.8%的平均F1分数。我们的方案实现了比金标准方法Pan Tompkins更好的泛化性能,Pan Tompkins的F1平均得分为93%。此外,我们的方法可以扩展到全心电标注。我们使用了QTDB数据集[4],我们报告了在注释ECG复合体的所有5个波(P-Q-R-S-T)时的准确率为91.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信