Calibration-Free Gaze Zone Estimation Using Convolutional Neural Network

Xiaolei Cha, Xiaohui Yang, Zhiquan Feng, Tao Xu, Xue Fan, Jinglan Tian
{"title":"Calibration-Free Gaze Zone Estimation Using Convolutional Neural Network","authors":"Xiaolei Cha, Xiaohui Yang, Zhiquan Feng, Tao Xu, Xue Fan, Jinglan Tian","doi":"10.1109/SPAC46244.2018.8965441","DOIUrl":null,"url":null,"abstract":"In this paper we propose a gaze zone estimation method using deep learning. Compared with traditional method, our method does not need the procedure of calibration. In the proposed method, a Kinect is used to capture the video of a computer user, which is pre-processed to suppress illumination variations. After that, haar cascade classifier is adopted to detect the face region and eye region. Then, the eye region is used to estimate the gaze zone on the monitor via a trained CNN (Convolution Neural Network). Experimental results show that the proposed method has a high accuracy, which can be applied in human-computer interaction.","PeriodicalId":360369,"journal":{"name":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC46244.2018.8965441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we propose a gaze zone estimation method using deep learning. Compared with traditional method, our method does not need the procedure of calibration. In the proposed method, a Kinect is used to capture the video of a computer user, which is pre-processed to suppress illumination variations. After that, haar cascade classifier is adopted to detect the face region and eye region. Then, the eye region is used to estimate the gaze zone on the monitor via a trained CNN (Convolution Neural Network). Experimental results show that the proposed method has a high accuracy, which can be applied in human-computer interaction.
基于卷积神经网络的无标定凝视区域估计
本文提出了一种基于深度学习的注视区域估计方法。与传统方法相比,该方法不需要校准过程。在提出的方法中,使用Kinect来捕获计算机用户的视频,并对其进行预处理以抑制光照变化。然后,采用haar级联分类器对人脸区域和眼睛区域进行检测。然后,通过训练好的CNN(卷积神经网络),利用眼睛区域来估计监视器上的注视区域。实验结果表明,该方法具有较高的准确率,可用于人机交互。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信