Features of a discrete Wigner distribution

M. Richman, T. Parks, R. Shenoy
{"title":"Features of a discrete Wigner distribution","authors":"M. Richman, T. Parks, R. Shenoy","doi":"10.1109/DSPWS.1996.555553","DOIUrl":null,"url":null,"abstract":"We discuss important attributes of a discrete Wigner distribution derived using a group-theoretic approach. The nature of this approach enables this distribution to satisfy numerous mathematical properties, including marginals and the Weyl (1964) correspondence. A few issues concerning the relationship of this distribution with group theory are explored in detail. In particular, the discrete distribution depends on the parity of the signal length, i.e. odd distributions are computed differently than even ones. This dependence is explained and a surprising consequence is demonstrated. We also describe how this distribution satisfies covariance properties. The three fundamental types of symplectic transformations (dilation/compression, shearing, and rotation) are are given and interpreted for this discrete case.","PeriodicalId":131323,"journal":{"name":"1996 IEEE Digital Signal Processing Workshop Proceedings","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE Digital Signal Processing Workshop Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPWS.1996.555553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We discuss important attributes of a discrete Wigner distribution derived using a group-theoretic approach. The nature of this approach enables this distribution to satisfy numerous mathematical properties, including marginals and the Weyl (1964) correspondence. A few issues concerning the relationship of this distribution with group theory are explored in detail. In particular, the discrete distribution depends on the parity of the signal length, i.e. odd distributions are computed differently than even ones. This dependence is explained and a surprising consequence is demonstrated. We also describe how this distribution satisfies covariance properties. The three fundamental types of symplectic transformations (dilation/compression, shearing, and rotation) are are given and interpreted for this discrete case.
离散维格纳分布的特征
讨论了用群论方法导出的离散维格纳分布的重要属性。这种方法的性质使这种分布能够满足许多数学性质,包括边际和Weyl(1964)对应。详细探讨了这种分布与群论关系的几个问题。特别是,离散分布取决于信号长度的奇偶性,即奇数分布的计算方式与偶数分布的计算方式不同。这种依赖性得到了解释,并证明了一个令人惊讶的结果。我们还描述了这个分布如何满足协方差性质。给出了三种基本类型的辛变换(膨胀/压缩、剪切和旋转),并对这种离散情况进行了解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信