Rakshith P, P. D, Y. R, Nisarga Nisarga, Gagan Simha R
{"title":"Controlled PV Systems Power Quality Retention and Output Power Escalation","authors":"Rakshith P, P. D, Y. R, Nisarga Nisarga, Gagan Simha R","doi":"10.1109/ICCS45141.2019.9065316","DOIUrl":null,"url":null,"abstract":"Due to the burden on fossil fuels the trend of generating power through renewable energy resources is gaining more importance day by day. In such systems there are issues related to efficiency and reliability. The paper focuses mainly on developing a model using MATLAB / SIMULINK software to overcome the above mentioned obstacles to the PV system and improve its overall performance by introducing appropriate control schemes. The aim of the PV system design is to escalate the output power under varying environmental conditions and also to retain the power quality of the PV system during faulty conditions. MPPT is applied to optimize the output power extraction through Incremental conductance (IncCond) method thus ensuring the system is running at its maximum power point irrespective of the partial shading effect and temperature variations in the environment. With the employment of power quality compensation scheme that in turn uses a DVR, the system is capable of restoring the power quality thereby commuting the power quality issues. Significant fall in the THD levels is attained by usage of DVR control scheme along with a CHB multilevel DC/AC converter. The significance of developing MPPT algorithm is illustrated by examining the impact of partial shading condition and the temperature variations on the system and its productivity. The demonstration of the power quality compensation capability of the PV system is achieved by the power quality compensation control scheme under faulty conditions.","PeriodicalId":433980,"journal":{"name":"2019 International Conference on Intelligent Computing and Control Systems (ICCS)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Intelligent Computing and Control Systems (ICCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCS45141.2019.9065316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the burden on fossil fuels the trend of generating power through renewable energy resources is gaining more importance day by day. In such systems there are issues related to efficiency and reliability. The paper focuses mainly on developing a model using MATLAB / SIMULINK software to overcome the above mentioned obstacles to the PV system and improve its overall performance by introducing appropriate control schemes. The aim of the PV system design is to escalate the output power under varying environmental conditions and also to retain the power quality of the PV system during faulty conditions. MPPT is applied to optimize the output power extraction through Incremental conductance (IncCond) method thus ensuring the system is running at its maximum power point irrespective of the partial shading effect and temperature variations in the environment. With the employment of power quality compensation scheme that in turn uses a DVR, the system is capable of restoring the power quality thereby commuting the power quality issues. Significant fall in the THD levels is attained by usage of DVR control scheme along with a CHB multilevel DC/AC converter. The significance of developing MPPT algorithm is illustrated by examining the impact of partial shading condition and the temperature variations on the system and its productivity. The demonstration of the power quality compensation capability of the PV system is achieved by the power quality compensation control scheme under faulty conditions.