Fractal Analysis of Radon Coefficients for No-Reference Video Quality Assessment (NR-VQA)

Anish Kumar Vishwakarma, K. Bhurchandi
{"title":"Fractal Analysis of Radon Coefficients for No-Reference Video Quality Assessment (NR-VQA)","authors":"Anish Kumar Vishwakarma, K. Bhurchandi","doi":"10.1109/PCEMS55161.2022.9808051","DOIUrl":null,"url":null,"abstract":"Forecast video quality in the absence of a reference video is a difficult task. This paper proposes a novel method for evaluating the quality of videos using the Radon transform. We propose fractal analysis of Radon coefficients to determine the video quality in the absence of reference data. Fractal analysis is a mathematical technique for characterizing the properties of objects that have an irregular or complex structure. It is used to extract the structural changes that occur in video frames as a result of various distortions. Additionally, a support vector regression model is used to predict the quality score of the video. Three widely used and publicly available video quality databases are used to validate the proposed NR-VQA model. In terms of quality prediction performance, the proposed model outperforms the majority of existing state-of-the-art methods.","PeriodicalId":248874,"journal":{"name":"2022 1st International Conference on the Paradigm Shifts in Communication, Embedded Systems, Machine Learning and Signal Processing (PCEMS)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 1st International Conference on the Paradigm Shifts in Communication, Embedded Systems, Machine Learning and Signal Processing (PCEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCEMS55161.2022.9808051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Forecast video quality in the absence of a reference video is a difficult task. This paper proposes a novel method for evaluating the quality of videos using the Radon transform. We propose fractal analysis of Radon coefficients to determine the video quality in the absence of reference data. Fractal analysis is a mathematical technique for characterizing the properties of objects that have an irregular or complex structure. It is used to extract the structural changes that occur in video frames as a result of various distortions. Additionally, a support vector regression model is used to predict the quality score of the video. Three widely used and publicly available video quality databases are used to validate the proposed NR-VQA model. In terms of quality prediction performance, the proposed model outperforms the majority of existing state-of-the-art methods.
无参考视频质量评价(NR-VQA)中氡系数分形分析
在没有参考视频的情况下预测视频质量是一项艰巨的任务。本文提出了一种利用Radon变换评价视频质量的新方法。在没有参考数据的情况下,我们提出了Radon系数的分形分析来确定视频质量。分形分析是一种描述具有不规则或复杂结构的物体特性的数学技术。它用于提取由于各种失真而在视频帧中发生的结构变化。此外,使用支持向量回归模型预测视频的质量分数。使用三个广泛使用和公开可用的视频质量数据库来验证所提出的NR-VQA模型。在质量预测性能方面,所提出的模型优于大多数现有的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信