Analysis of the determinism of time-series extracted from social and biological systems

Fortuna Luigi, F. Mattia, Gambuzza Lucia, R. Ali, M. Rashid, M. T. Rashid
{"title":"Analysis of the determinism of time-series extracted from social and biological systems","authors":"Fortuna Luigi, F. Mattia, Gambuzza Lucia, R. Ali, M. Rashid, M. T. Rashid","doi":"10.33762/EEEJ.2010.54891","DOIUrl":null,"url":null,"abstract":"Self-organizing systems arise in many different fields. In this work we analyze data from social and biological systems. A central question is to demonstrate the presence of the determinism in time-series extracted from such systems that appear apparently not correlated but that are two good benchmarks for the study of complexity in real systems. We will apply the Kaplan test and we will define an order parameter for the biological data to characterize the complexity of the system.","PeriodicalId":210016,"journal":{"name":"2010 1st International Conference on Energy, Power and Control (EPC-IQ)","volume":"12 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 1st International Conference on Energy, Power and Control (EPC-IQ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33762/EEEJ.2010.54891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Self-organizing systems arise in many different fields. In this work we analyze data from social and biological systems. A central question is to demonstrate the presence of the determinism in time-series extracted from such systems that appear apparently not correlated but that are two good benchmarks for the study of complexity in real systems. We will apply the Kaplan test and we will define an order parameter for the biological data to characterize the complexity of the system.
从社会和生物系统中提取的时间序列的决定论分析
自组织系统出现在许多不同的领域。在这项工作中,我们分析来自社会和生物系统的数据。一个中心问题是证明从这些系统中提取的时间序列中的决定论的存在,这些系统显然是不相关的,但这是研究实际系统复杂性的两个很好的基准。我们将应用卡普兰测试,我们将为生物数据定义一个顺序参数,以表征系统的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信