Multi-space PCA with its application in fault diagnosis

Jing Hu, Chenglin Wen, Ping Li, Chunxia Wang
{"title":"Multi-space PCA with its application in fault diagnosis","authors":"Jing Hu, Chenglin Wen, Ping Li, Chunxia Wang","doi":"10.1109/CHICC.2014.6895487","DOIUrl":null,"url":null,"abstract":"Traditional PCA method can detect “big” failures with obvious signs of abnormality effectively. But it does not seem to apply for failures with smaller signs drowned in the noise or “big” failures. Meanwhile, there is still not a clear and consistent explanation for the impact of the PCA subspace decomposition on the fault detection capability. In this paper, aiming at fault diagnosis with small signs, a method of multi-space principal component analysis is proposed based on the research on the effect of subspace decomposition on the capability of fault diagnosis, which is applied into the process monitoring. Case studies validate the effectiveness of the proposed approaches.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHICC.2014.6895487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Traditional PCA method can detect “big” failures with obvious signs of abnormality effectively. But it does not seem to apply for failures with smaller signs drowned in the noise or “big” failures. Meanwhile, there is still not a clear and consistent explanation for the impact of the PCA subspace decomposition on the fault detection capability. In this paper, aiming at fault diagnosis with small signs, a method of multi-space principal component analysis is proposed based on the research on the effect of subspace decomposition on the capability of fault diagnosis, which is applied into the process monitoring. Case studies validate the effectiveness of the proposed approaches.
多空间PCA及其在故障诊断中的应用
传统的主成分分析方法可以有效地检测出异常迹象明显的“大”故障。但它似乎并不适用于那些被噪音淹没的小迹象或“大”失败。同时,对于PCA子空间分解对故障检测能力的影响,目前还没有一个清晰一致的解释。本文针对小信号故障诊断,在研究子空间分解对故障诊断能力影响的基础上,提出了一种多空间主成分分析方法,并将其应用于过程监控中。案例研究验证了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信