Iterative solutions to classical second-order ordinary differential equations

W. Robin
{"title":"Iterative solutions to classical second-order ordinary differential equations","authors":"W. Robin","doi":"10.12988/JITE.2019.911","DOIUrl":null,"url":null,"abstract":"An elementary scheme is detailed for introducing certain basic concepts in the solution of (especially) the basic second-order ordinary differential equations of classical mathematical physics. The method proposed, an integration/iteration process, allows the development of (generally Frobenius) power series, as well as exposing the rudiments of the Green function approach to solving linear ordinary differential equations. The method assumes only a background knowledge compatible with most introductory calculus courses. Mathematics Subject Classification: 33C05, 33C15, 33C45, 34-01, 34-04, 34A25","PeriodicalId":378124,"journal":{"name":"Journal of Innovative Technology and Education","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovative Technology and Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/JITE.2019.911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An elementary scheme is detailed for introducing certain basic concepts in the solution of (especially) the basic second-order ordinary differential equations of classical mathematical physics. The method proposed, an integration/iteration process, allows the development of (generally Frobenius) power series, as well as exposing the rudiments of the Green function approach to solving linear ordinary differential equations. The method assumes only a background knowledge compatible with most introductory calculus courses. Mathematics Subject Classification: 33C05, 33C15, 33C45, 34-01, 34-04, 34A25
经典二阶常微分方程的迭代解
详细介绍了经典数学物理中(特别是)基本二阶常微分方程解中引入某些基本概念的一种基本格式。所提出的方法,一个积分/迭代过程,允许(一般Frobenius)幂级数的发展,以及暴露格林函数方法的基本原理来解决线性常微分方程。这种方法只需要具备与大多数微积分入门课程相适应的背景知识。数学学科分类:33C05、33C15、33C45、34-01、34-04、34A25
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信