Consensus operators for decision making in Fuzzy Random Forest ensemble

J. M. Cadenas, M. C. Garrido, A. Martínez, Raquel Martínez
{"title":"Consensus operators for decision making in Fuzzy Random Forest ensemble","authors":"J. M. Cadenas, M. C. Garrido, A. Martínez, Raquel Martínez","doi":"10.1109/ISDA.2011.6121852","DOIUrl":null,"url":null,"abstract":"When individual classifiers are combined appropriately, we usually obtain a better performance in terms of classification precision. Classifier ensembles are the result of combining several individual classifiers. In this work we propose and compare various consensus based combination methods to obtain the final decision of the ensemble based on fuzzy decision trees in order to improve results. We make a comparative study with several datasets to show the efficiency of the various combination methods.","PeriodicalId":433207,"journal":{"name":"2011 11th International Conference on Intelligent Systems Design and Applications","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2011.6121852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When individual classifiers are combined appropriately, we usually obtain a better performance in terms of classification precision. Classifier ensembles are the result of combining several individual classifiers. In this work we propose and compare various consensus based combination methods to obtain the final decision of the ensemble based on fuzzy decision trees in order to improve results. We make a comparative study with several datasets to show the efficiency of the various combination methods.
模糊随机森林集成决策的共识算子
当各个分类器进行适当的组合时,我们通常可以在分类精度方面获得更好的性能。分类器集成是将几个单独的分类器组合在一起的结果。在本文中,我们提出并比较了各种基于共识的组合方法来获得基于模糊决策树的集成的最终决策,以提高结果。通过对多个数据集的对比研究,证明了各种组合方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信