Minimizing Cognitive Load in Cyber Learning Materials – An Eye Tracking Study

Leon Bernard, Sagar Raina, Blair Taylor, S. Kaza
{"title":"Minimizing Cognitive Load in Cyber Learning Materials – An Eye Tracking Study","authors":"Leon Bernard, Sagar Raina, Blair Taylor, S. Kaza","doi":"10.1145/3448018.3458617","DOIUrl":null,"url":null,"abstract":"Cybersecurity education is critical in addressing the global cyber crisis. However, cybersecurity is inherently complex and teaching cyber can lead to cognitive overload among students. Cognitive load includes: 1) intrinsic load (IL- due to inherent difficulty of the topic), 2) extraneous (EL- due to presentation of material), and 3) germane (GL- due to extra effort put in for learning). The challenge is to minimize IL and EL and maximize GL. We propose a model to develop cybersecurity learning materials that incorporate both the Bloom's taxonomy cognitive framework and the design principles of content segmentation and interactivity. We conducted a randomized control/treatment group study to test the proposed model by measuring cognitive load using two eye-tracking metrics (fixation duration and pupil size) between two cybersecurity learning modalities – 1) segmented and interactive modules, and 2) traditional-without segmentation and interactivity (control). Nineteen computer science majors in a large comprehensive university participated in the study and completed a learning module focused on integer overflow in a popular programming language.","PeriodicalId":226088,"journal":{"name":"ACM Symposium on Eye Tracking Research and Applications","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448018.3458617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cybersecurity education is critical in addressing the global cyber crisis. However, cybersecurity is inherently complex and teaching cyber can lead to cognitive overload among students. Cognitive load includes: 1) intrinsic load (IL- due to inherent difficulty of the topic), 2) extraneous (EL- due to presentation of material), and 3) germane (GL- due to extra effort put in for learning). The challenge is to minimize IL and EL and maximize GL. We propose a model to develop cybersecurity learning materials that incorporate both the Bloom's taxonomy cognitive framework and the design principles of content segmentation and interactivity. We conducted a randomized control/treatment group study to test the proposed model by measuring cognitive load using two eye-tracking metrics (fixation duration and pupil size) between two cybersecurity learning modalities – 1) segmented and interactive modules, and 2) traditional-without segmentation and interactivity (control). Nineteen computer science majors in a large comprehensive university participated in the study and completed a learning module focused on integer overflow in a popular programming language.
最小化网络学习材料中的认知负荷——一项眼动追踪研究
网络安全教育是应对全球网络危机的关键。然而,网络安全本质上是复杂的,网络教学可能会导致学生的认知过载。认知负荷包括:1)内在负荷(IL-由于主题本身的难度),2)外在负荷(EL-由于材料的呈现),以及3)密切负荷(GL-由于学习所付出的额外努力)。我们面临的挑战是最小化IL和EL,最大化GL。我们提出了一个模型来开发网络安全学习材料,该材料结合了Bloom的分类法认知框架和内容分割和交互性的设计原则。我们进行了一项随机对照/治疗组研究,通过使用两个眼动追踪指标(注视时间和瞳孔大小)测量两种网络安全学习模式(1)分段和互动模块,以及2)传统-无分段和互动(对照)的认知负荷,来测试所提出的模型。一所大型综合性大学的19名计算机科学专业的学生参与了这项研究,并完成了一个以一种流行的编程语言为重点的整数溢出学习模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信