{"title":"3D machine vision and artificial neural networks for quality inspection in mass production pieces","authors":"A. Tellaeche, B. Robles","doi":"10.1109/ETFA.2010.5641069","DOIUrl":null,"url":null,"abstract":"The exhaustive quality control is becoming very important in the world's globalized market. One of these examples where quality control becomes critical is the percussion cap mass production. These elements must achieve a minimum tolerance deviation in their fabrication. This paper outlines a machine vision development using a 3D camera for the inspection of the whole production of percussion caps. This system presents multiple problems, such as metallic reflections in the percussion caps, high speed movement of the system and mechanical errors and irregularities in percussion cap placement. Due to these problems, it is impossible to solve the problem by traditional image processing methods, and hence, a neural network has been tested to provide a feasible classification of the possible errors present in the percussion caps.","PeriodicalId":201440,"journal":{"name":"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2010.5641069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The exhaustive quality control is becoming very important in the world's globalized market. One of these examples where quality control becomes critical is the percussion cap mass production. These elements must achieve a minimum tolerance deviation in their fabrication. This paper outlines a machine vision development using a 3D camera for the inspection of the whole production of percussion caps. This system presents multiple problems, such as metallic reflections in the percussion caps, high speed movement of the system and mechanical errors and irregularities in percussion cap placement. Due to these problems, it is impossible to solve the problem by traditional image processing methods, and hence, a neural network has been tested to provide a feasible classification of the possible errors present in the percussion caps.