Geometry Meets Vectors: Approximation Algorithms for Multidimensional Packing

Arindam Khan, Eklavya Sharma, K. V. N. Sreenivas
{"title":"Geometry Meets Vectors: Approximation Algorithms for Multidimensional Packing","authors":"Arindam Khan, Eklavya Sharma, K. V. N. Sreenivas","doi":"10.4230/LIPIcs.FSTTCS.2022.23","DOIUrl":null,"url":null,"abstract":"We study the generalized multidimensional bin packing problem (GVBP) that generalizes both geometric packing and vector packing. Here, we are given $n$ rectangular items where the $i^{\\textrm{th}}$ item has width $w(i)$, height $h(i)$, and $d$ nonnegative weights $v_1(i), v_2(i), \\ldots, v_{d}(i)$. Our goal is to get an axis-parallel non-overlapping packing of the items into square bins so that for all $j \\in [d]$, the sum of the $j^{\\textrm{th}}$ weight of items in each bin is at most 1. This is a natural problem arising in logistics, resource allocation, and scheduling. Despite being well studied in practice, surprisingly, approximation algorithms for this problem have rarely been explored. We first obtain two simple algorithms for GVBP having asymptotic approximation ratios $6(d+1)$ and $3(1 + \\ln(d+1) + \\varepsilon)$. We then extend the Round-and-Approx (R&A) framework [Bansal-Khan, SODA'14] to wider classes of algorithms, and show how it can be adapted to GVBP. Using more sophisticated techniques, we obtain better approximation algorithms for GVBP, and we get further improvement by combining them with the R&A framework. This gives us an asymptotic approximation ratio of $2(1+\\ln((d+4)/2))+\\varepsilon$ for GVBP, which improves to $2.919+\\varepsilon$ for the special case of $d=1$. We obtain further improvement when the items are allowed to be rotated. We also present algorithms for a generalization of GVBP where the items are high dimensional cuboids.","PeriodicalId":175000,"journal":{"name":"Foundations of Software Technology and Theoretical Computer Science","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Software Technology and Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSTTCS.2022.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We study the generalized multidimensional bin packing problem (GVBP) that generalizes both geometric packing and vector packing. Here, we are given $n$ rectangular items where the $i^{\textrm{th}}$ item has width $w(i)$, height $h(i)$, and $d$ nonnegative weights $v_1(i), v_2(i), \ldots, v_{d}(i)$. Our goal is to get an axis-parallel non-overlapping packing of the items into square bins so that for all $j \in [d]$, the sum of the $j^{\textrm{th}}$ weight of items in each bin is at most 1. This is a natural problem arising in logistics, resource allocation, and scheduling. Despite being well studied in practice, surprisingly, approximation algorithms for this problem have rarely been explored. We first obtain two simple algorithms for GVBP having asymptotic approximation ratios $6(d+1)$ and $3(1 + \ln(d+1) + \varepsilon)$. We then extend the Round-and-Approx (R&A) framework [Bansal-Khan, SODA'14] to wider classes of algorithms, and show how it can be adapted to GVBP. Using more sophisticated techniques, we obtain better approximation algorithms for GVBP, and we get further improvement by combining them with the R&A framework. This gives us an asymptotic approximation ratio of $2(1+\ln((d+4)/2))+\varepsilon$ for GVBP, which improves to $2.919+\varepsilon$ for the special case of $d=1$. We obtain further improvement when the items are allowed to be rotated. We also present algorithms for a generalization of GVBP where the items are high dimensional cuboids.
几何遇上向量:多维填充的近似算法
研究了广义多维装箱问题(GVBP),该问题将几何装箱和向量装箱两类问题进行了推广。这里,我们有$n$个矩形项,其中$i^{\textrm{th}}$项的宽度为$w(i)$,高度为$h(i)$,权值为$d$,非负权为$v_1(i), v_2(i), \ldots, v_{d}(i)$。我们的目标是将物品以轴平行的无重叠的方式打包到方形箱子中,这样对于所有$j \in [d]$,每个箱子中物品的重量$j^{\textrm{th}}$的总和最多为1。这是物流、资源分配和调度中出现的一个自然问题。尽管在实践中得到了很好的研究,令人惊讶的是,这个问题的近似算法很少被探索。我们首先得到两种简单的GVBP算法,它们具有渐近逼近比$6(d+1)$和$3(1 + \ln(d+1) + \varepsilon)$。然后,我们将舍入近似(R&A)框架[Bansal-Khan, SODA'14]扩展到更广泛的算法类别,并展示如何将其适应于GVBP。使用更复杂的技术,我们得到了更好的GVBP近似算法,并将其与R&A框架相结合,得到了进一步的改进。这为我们提供了GVBP的渐近近似比$2(1+\ln((d+4)/2))+\varepsilon$,对于$d=1$的特殊情况,它改进为$2.919+\varepsilon$。当允许物品被旋转时,我们得到了进一步的改进。我们还提出了一种泛化GVBP的算法,其中项目是高维长方体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信