Linear higher-order pre-unification

I. Cervesato, F. Pfenning
{"title":"Linear higher-order pre-unification","authors":"I. Cervesato, F. Pfenning","doi":"10.1109/LICS.1997.614967","DOIUrl":null,"url":null,"abstract":"We develop an efficient representation and a pre-unification algorithm in the style of Huet (1975) for the linear /spl lambda/-calculus /spl lambda//sup /spl rarr//spl rArr/0&T/ which includes intuitionistic functions (/spl rarr/), linear functions (/spl rArr/), additive pairing (&), and additive unit (T). Applications lie in proof scorch, logic programming, and logical frameworks based on linear type theories. We also show that, surprisingly, a similar pre-unification algorithm does not exist for certain sublanguages.","PeriodicalId":272903,"journal":{"name":"Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1997.614967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We develop an efficient representation and a pre-unification algorithm in the style of Huet (1975) for the linear /spl lambda/-calculus /spl lambda//sup /spl rarr//spl rArr/0&T/ which includes intuitionistic functions (/spl rarr/), linear functions (/spl rArr/), additive pairing (&), and additive unit (T). Applications lie in proof scorch, logic programming, and logical frameworks based on linear type theories. We also show that, surprisingly, a similar pre-unification algorithm does not exist for certain sublanguages.
线性高阶预统一
我们以Huet(1975)的风格开发了线性/spl lambda/-calculus /spl lambda//sup /spl rarr//spl rarr/ 0&T/的有效表示和预统一算法,其中包括直觉函数(/spl rarr/)、线性函数(/spl rarr/)、可加性配对(&)和可加性单位(T)。应用于基于线性类型理论的证明、逻辑规划和逻辑框架。我们还表明,令人惊讶的是,对于某些子语言不存在类似的预统一算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信