Using MPI file caching to improve parallel write performance for large-scale scientific applications

W. Liao, A. Ching, Kenin Coloma, Arifa Nisar, A. Choudhary, Jacqueline H. Chen, R. Sankaran, S. Klasky
{"title":"Using MPI file caching to improve parallel write performance for large-scale scientific applications","authors":"W. Liao, A. Ching, Kenin Coloma, Arifa Nisar, A. Choudhary, Jacqueline H. Chen, R. Sankaran, S. Klasky","doi":"10.1145/1362622.1362634","DOIUrl":null,"url":null,"abstract":"Typical large-scale scientific applications periodically write checkpoint files to save the computational state throughout execution. Existing parallel file systems improve such write-only I/O patterns through the use of client-side file caching and write-behind strategies. In distributed environments where files are rarely accessed by more than one client concurrently, file caching has achieved significant success; however, in parallel applications where multiple clients manipulate a shared file, cache coherence control can serialize I/O. We have designed a thread based caching layer for the MPI I/O library, which adds a portable caching system closer to user applications so more information about the application's I/O patterns is available for better coherence control. We demonstrate the impact of our caching solution on parallel write performance with a comprehensive evaluation that includes a set of widely used I/O benchmarks and production application I/O kernels.","PeriodicalId":274744,"journal":{"name":"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1362622.1362634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Typical large-scale scientific applications periodically write checkpoint files to save the computational state throughout execution. Existing parallel file systems improve such write-only I/O patterns through the use of client-side file caching and write-behind strategies. In distributed environments where files are rarely accessed by more than one client concurrently, file caching has achieved significant success; however, in parallel applications where multiple clients manipulate a shared file, cache coherence control can serialize I/O. We have designed a thread based caching layer for the MPI I/O library, which adds a portable caching system closer to user applications so more information about the application's I/O patterns is available for better coherence control. We demonstrate the impact of our caching solution on parallel write performance with a comprehensive evaluation that includes a set of widely used I/O benchmarks and production application I/O kernels.
使用MPI文件缓存提高大规模科学应用程序的并行写性能
典型的大型科学应用程序在整个执行过程中定期写入检查点文件以保存计算状态。现有的并行文件系统通过使用客户端文件缓存和后写策略改进了这种只写I/O模式。在分布式环境中,文件很少被多个客户端同时访问,文件缓存已经取得了显著的成功;然而,在多个客户端操作共享文件的并行应用程序中,缓存一致性控制可以序列化I/O。我们为MPI I/O库设计了一个基于线程的缓存层,它增加了一个更接近用户应用程序的便携式缓存系统,这样就可以获得更多关于应用程序I/O模式的信息,从而实现更好的一致性控制。我们通过一组广泛使用的I/O基准测试和生产应用程序I/O内核的综合评估,演示了我们的缓存解决方案对并行写性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信