Hierarchical Sparsity Within And Across Overlapping Groups

I. Bayram
{"title":"Hierarchical Sparsity Within And Across Overlapping Groups","authors":"I. Bayram","doi":"10.1109/SSP.2018.8450707","DOIUrl":null,"url":null,"abstract":"Recently, different penalties have been proposed for signals whose non-zero coefficients reside in a small number of groups, where within each group, only few of the coefficients are active. In this paper, we extend such a penalty, and introduce an additional layer of grouping on the coefficients. Specifically, we first partition the signal into groups, and then apply the penalty on the $\\ell _{2}$ norms of the groups. We discuss how this extended penalty can be used in energy minimization formulations, and demonstrate the effects of the proposed extension on a dereverberation experiment.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"2672 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, different penalties have been proposed for signals whose non-zero coefficients reside in a small number of groups, where within each group, only few of the coefficients are active. In this paper, we extend such a penalty, and introduce an additional layer of grouping on the coefficients. Specifically, we first partition the signal into groups, and then apply the penalty on the $\ell _{2}$ norms of the groups. We discuss how this extended penalty can be used in energy minimization formulations, and demonstrate the effects of the proposed extension on a dereverberation experiment.
重叠组内和组间的层次稀疏性
近年来,对于非零系数存在于少数组中的信号,提出了不同的惩罚方法,其中每组中只有少数系数是有效的。在本文中,我们扩展了这种惩罚,并在系数上引入了额外的分组层。具体来说,我们首先将信号分成若干组,然后对这些组的$\ell _{2}$范数施加惩罚。我们讨论了如何在能量最小化公式中使用这种扩展惩罚,并演示了所提议的扩展对脱噪实验的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信