A soft decision output convolutional decoder based on the application of neural networks

S. Berber
{"title":"A soft decision output convolutional decoder based on the application of neural networks","authors":"S. Berber","doi":"10.1109/MILCOM.2005.1605888","DOIUrl":null,"url":null,"abstract":"The paper investigates BER characteristics of a new algorithm for decoding convolutional codes based on neural networks. The novelty of the algorithm is in its capability to generate soft output estimates of the message bits encoded. It is shown that the defined noise energy function, which is traditionally used for the soft decoding algorithm of convolutional codes, can be related to the well known log likelihood function. The coding gain is calculated using a developed simulator of a coding communication system that uses a systematic 1/2-rate convolutional code","PeriodicalId":223742,"journal":{"name":"MILCOM 2005 - 2005 IEEE Military Communications Conference","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2005 - 2005 IEEE Military Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2005.1605888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The paper investigates BER characteristics of a new algorithm for decoding convolutional codes based on neural networks. The novelty of the algorithm is in its capability to generate soft output estimates of the message bits encoded. It is shown that the defined noise energy function, which is traditionally used for the soft decoding algorithm of convolutional codes, can be related to the well known log likelihood function. The coding gain is calculated using a developed simulator of a coding communication system that uses a systematic 1/2-rate convolutional code
基于神经网络应用的软判决输出卷积解码器
研究了一种基于神经网络的卷积码译码算法的误码率特性。该算法的新颖之处在于它能够对编码的消息位生成软输出估计。研究表明,卷积码软译码算法中常用的定义噪声能量函数可以与对数似然函数相关联。编码增益的计算使用一个开发的编码通信系统的模拟器,该系统使用系统的1/2-速率卷积码
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信