{"title":"Efficient tag based personalised collaborative movie reccommendation system","authors":"Anand Shanker Tewari, Naina Yadav, A. Barman","doi":"10.1109/IC3I.2016.7917941","DOIUrl":null,"url":null,"abstract":"Recommender System is a set of programs and techniques used for predicting items or rating of items in fields in which a user may be interested. The objectives of recommendation techniques are to assess and mitigate the problem of information overload where a user is not able to receive a clear result of his search. From these recommendations may help in various decision-making processes such as which items to buy, which music to listen, or which online news to read and which research paper to read etc. In this paper, we introduce a new recommendation model which takes into consideration a user's information based on tagging. The proposed approach offers significant advantages in terms of improving the recommendation quality for movies.","PeriodicalId":305971,"journal":{"name":"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3I.2016.7917941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Recommender System is a set of programs and techniques used for predicting items or rating of items in fields in which a user may be interested. The objectives of recommendation techniques are to assess and mitigate the problem of information overload where a user is not able to receive a clear result of his search. From these recommendations may help in various decision-making processes such as which items to buy, which music to listen, or which online news to read and which research paper to read etc. In this paper, we introduce a new recommendation model which takes into consideration a user's information based on tagging. The proposed approach offers significant advantages in terms of improving the recommendation quality for movies.