Evaluating the CO2 capture performance of a “phase-change” metal–organic framework in a pressure-vacuum swing adsorption process†

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL
David Danaci, Elena Pulidori, Luca Bernazzani, Camille Petit and Marco Taddei
{"title":"Evaluating the CO2 capture performance of a “phase-change” metal–organic framework in a pressure-vacuum swing adsorption process†","authors":"David Danaci, Elena Pulidori, Luca Bernazzani, Camille Petit and Marco Taddei","doi":"10.1039/D3ME00098B","DOIUrl":null,"url":null,"abstract":"<p >Metal–organic frameworks (MOFs) that display step-shaped adsorption isotherms, <em>i.e.</em>, “phase-change” MOFs, represent a relatively small subset of all known MOFs. Yet, they are rapidly emerging as promising sorbents to achieve excellent gas separation performances with little energy demand. In this work, we assessed F4_MIL-140A(Ce), a recently discovered “phase-change” MOF adsorbent, for CO<small><sub>2</sub></small> capture in two scenarios using a pressure-vacuum swing adsorption process, namely a coal-fired power plant flue gas (12.5%<small><sub>mol</sub></small> CO<small><sub>2</sub></small>), and a steel plant flue gas (25.5%<small><sub>mol</sub></small> CO<small><sub>2</sub></small>). Four CO<small><sub>2</sub></small> and three N<small><sub>2</sub></small> adsorption isotherms were collected on F4_MIL-140A(Ce) over a range of temperatures and modelled using a bespoke equation for step-shaped isotherms. We accurately measured the heat capacity of F4_MIL-140A(Ce), a key thermodynamic property for a sorbent, using a method based on differential scanning calorimetry that overcomes the issues associated with the poor thermal conductivity of MOF powders. We then used these experimental data as input in a process optimisation framework and we compared the CO<small><sub>2</sub></small> capture performance of F4_MIL-140A(Ce) to that of other “canonical” sorbents, including, zeolite 13X, activated carbon and three MOFs (<em>i.e.</em>, HKUST-1, UTSA-16 and CALF-20). We found that F4_MIL-140A(Ce) has the potential to perform better than other sorbents, in terms of recovery and purity, under most of the simulated process conditions. We attribute such promising performance to the non-hysteretic step-shaped isotherm, the low uptake capacity for N<small><sub>2</sub></small> and the mild heat of CO<small><sub>2</sub></small> adsorption displayed by F4_MIL-140A(Ce).</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/me/d3me00098b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/me/d3me00098b","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal–organic frameworks (MOFs) that display step-shaped adsorption isotherms, i.e., “phase-change” MOFs, represent a relatively small subset of all known MOFs. Yet, they are rapidly emerging as promising sorbents to achieve excellent gas separation performances with little energy demand. In this work, we assessed F4_MIL-140A(Ce), a recently discovered “phase-change” MOF adsorbent, for CO2 capture in two scenarios using a pressure-vacuum swing adsorption process, namely a coal-fired power plant flue gas (12.5%mol CO2), and a steel plant flue gas (25.5%mol CO2). Four CO2 and three N2 adsorption isotherms were collected on F4_MIL-140A(Ce) over a range of temperatures and modelled using a bespoke equation for step-shaped isotherms. We accurately measured the heat capacity of F4_MIL-140A(Ce), a key thermodynamic property for a sorbent, using a method based on differential scanning calorimetry that overcomes the issues associated with the poor thermal conductivity of MOF powders. We then used these experimental data as input in a process optimisation framework and we compared the CO2 capture performance of F4_MIL-140A(Ce) to that of other “canonical” sorbents, including, zeolite 13X, activated carbon and three MOFs (i.e., HKUST-1, UTSA-16 and CALF-20). We found that F4_MIL-140A(Ce) has the potential to perform better than other sorbents, in terms of recovery and purity, under most of the simulated process conditions. We attribute such promising performance to the non-hysteretic step-shaped isotherm, the low uptake capacity for N2 and the mild heat of CO2 adsorption displayed by F4_MIL-140A(Ce).

Abstract Image

评估“相变”金属-有机框架在压力-真空变吸附过程中的CO2捕获性能
显示阶梯状吸附等温线的金属有机骨架(mof),即“相变”mof,代表了所有已知mof中相对较小的子集。然而,它们正迅速成为有前途的吸附剂,以实现……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信