Construction of Error Correcting Output Codes for Robust Deep Neural Networks Based on Label Grouping Scheme

Hwiyoung Youn, Soonhee Kwon, Hyunhee Lee, Jiho Kim, Songnam Hong, Dong-joon Shin
{"title":"Construction of Error Correcting Output Codes for Robust Deep Neural Networks Based on Label Grouping Scheme","authors":"Hwiyoung Youn, Soonhee Kwon, Hyunhee Lee, Jiho Kim, Songnam Hong, Dong-joon Shin","doi":"10.1109/IC-NIDC54101.2021.9660486","DOIUrl":null,"url":null,"abstract":"Error-Correcting Output Codes (ECOCs) have been proposed to construct multi-class classifiers using simple binary classifiers. Recently, the principle of ECOCs has been employed for improving the robustness of deep classifiers. In this paper, a novel ECOC framework is developed by presenting a novel label grouping and code-construction method. The proposed label grouping is based on linear discriminant analysis (LDA) similarity. Via simulations, it is demonstrated that deep classifiers trained with the proposed ECOC yield better classification performance on pure data and better adversarial robustness than the state-of-the-art deep neural classifiers using ECOCs.","PeriodicalId":264468,"journal":{"name":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC-NIDC54101.2021.9660486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Error-Correcting Output Codes (ECOCs) have been proposed to construct multi-class classifiers using simple binary classifiers. Recently, the principle of ECOCs has been employed for improving the robustness of deep classifiers. In this paper, a novel ECOC framework is developed by presenting a novel label grouping and code-construction method. The proposed label grouping is based on linear discriminant analysis (LDA) similarity. Via simulations, it is demonstrated that deep classifiers trained with the proposed ECOC yield better classification performance on pure data and better adversarial robustness than the state-of-the-art deep neural classifiers using ECOCs.
基于标签分组方案的鲁棒深度神经网络纠错输出码构建
纠错输出码(Error-Correcting Output Codes, ecoc)是一种利用简单的二值分类器来构造多类分类器的方法。近年来,深度分类器的鲁棒性得到了广泛的应用。本文通过提出一种新的标签分组和编码构造方法,提出了一种新的ECOC框架。提出的标签分组基于线性判别分析(LDA)相似度。通过仿真证明,与使用ECOC的最先进的深度神经分类器相比,使用ECOC训练的深度分类器在纯数据上具有更好的分类性能和更好的对抗鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信