A single-tree algorithm to compute the Euclidean minimum spanning tree on GPUs

A. Prokopenko, Piyush Sao, D. Lebrun-Grandié
{"title":"A single-tree algorithm to compute the Euclidean minimum spanning tree on GPUs","authors":"A. Prokopenko, Piyush Sao, D. Lebrun-Grandié","doi":"10.1145/3545008.3546185","DOIUrl":null,"url":null,"abstract":"Computing the Euclidean minimum spanning tree (Emst) is a computationally demanding step of many algorithms. While work-efficient serial and multithreaded algorithms for computing Emst are known, designing an efficient GPU algorithm is challenging due to a complex branching structure, data dependencies, and load imbalances. In this paper, we propose a single-tree Borůvka-based algorithm for computing Emst on GPUs. We use an efficient nearest neighbor algorithm and reduce the number of the required distance calculations by avoiding traversing subtrees with leaf nodes in the same component. The developed algorithms are implemented in a performance portable way using ArborX, an open-source geometric search library based on the Kokkos framework. We evaluate the proposed algorithm on various 2D and 3D datasets, show and compare it with the current state-of-the-art open-source CPU implementations. We demonstrate 4-24 × speedup over the fastest multi-threaded implementation. We prove the portability of our implementation by providing results on a variety of hardware: AMD EPYC 7763, Nvidia A100 and AMD MI250X. We show scalability of the implementation, computing Emst for 37 million 3D cosmological dataset in under a 0.5 second on a single A100 Nvidia GPU.","PeriodicalId":360504,"journal":{"name":"Proceedings of the 51st International Conference on Parallel Processing","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545008.3546185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Computing the Euclidean minimum spanning tree (Emst) is a computationally demanding step of many algorithms. While work-efficient serial and multithreaded algorithms for computing Emst are known, designing an efficient GPU algorithm is challenging due to a complex branching structure, data dependencies, and load imbalances. In this paper, we propose a single-tree Borůvka-based algorithm for computing Emst on GPUs. We use an efficient nearest neighbor algorithm and reduce the number of the required distance calculations by avoiding traversing subtrees with leaf nodes in the same component. The developed algorithms are implemented in a performance portable way using ArborX, an open-source geometric search library based on the Kokkos framework. We evaluate the proposed algorithm on various 2D and 3D datasets, show and compare it with the current state-of-the-art open-source CPU implementations. We demonstrate 4-24 × speedup over the fastest multi-threaded implementation. We prove the portability of our implementation by providing results on a variety of hardware: AMD EPYC 7763, Nvidia A100 and AMD MI250X. We show scalability of the implementation, computing Emst for 37 million 3D cosmological dataset in under a 0.5 second on a single A100 Nvidia GPU.
在gpu上计算欧几里得最小生成树的单树算法
计算欧几里得最小生成树(Emst)是许多算法中计算量很大的一个步骤。虽然已知用于计算Emst的高效串行和多线程算法,但由于复杂的分支结构、数据依赖性和负载不平衡,设计高效的GPU算法具有挑战性。在本文中,我们提出了一种单树Borůvka-based算法来计算gpu上的Emst。我们使用了一种高效的最近邻算法,并通过避免遍历具有相同组件中叶节点的子树来减少所需的距离计算次数。开发的算法使用基于Kokkos框架的开源几何搜索库ArborX以性能可移植的方式实现。我们在各种2D和3D数据集上评估了所提出的算法,并将其与当前最先进的开源CPU实现进行了比较。我们在最快的多线程实现上演示了4-24倍的加速。我们通过在各种硬件上提供结果来证明我们的实现的可移植性:AMD EPYC 7763, Nvidia A100和AMD MI250X。我们展示了实现的可扩展性,在单个A100 Nvidia GPU上,在0.5秒内计算3700万个3D宇宙学数据集的Emst。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信