Automatic Sparsity-Aware Recognition for Keypoint Detection

Yurui Xie, L. Guan
{"title":"Automatic Sparsity-Aware Recognition for Keypoint Detection","authors":"Yurui Xie, L. Guan","doi":"10.1109/ISM.2020.00029","DOIUrl":null,"url":null,"abstract":"We present a novel Sparsity-Aware Keypoint detector (SAKD) to localize a set of discriminative keypoints via optimization of group-sparse coding. Unlike most of current handcrafted keypoint detectors that are limited by the manually defined local structures, the proposed method has the capacity to allow flexibility for exploiting diverse structures with the combination of visual atoms from a vocabulary. Another key valuable attribute is that its group-sparsity nature concentrates on discovering sharable structural patterns across keypoints within an image jointly. This main merit facilitates to localize repeatable keypoints and resists against distractors when image undergoes various transformations. Extensive experiments on four challenging benchmark datasets demonstrate that the proposed method achieves favorable performances compared with state-of-the-art in literature.","PeriodicalId":120972,"journal":{"name":"2020 IEEE International Symposium on Multimedia (ISM)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2020.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a novel Sparsity-Aware Keypoint detector (SAKD) to localize a set of discriminative keypoints via optimization of group-sparse coding. Unlike most of current handcrafted keypoint detectors that are limited by the manually defined local structures, the proposed method has the capacity to allow flexibility for exploiting diverse structures with the combination of visual atoms from a vocabulary. Another key valuable attribute is that its group-sparsity nature concentrates on discovering sharable structural patterns across keypoints within an image jointly. This main merit facilitates to localize repeatable keypoints and resists against distractors when image undergoes various transformations. Extensive experiments on four challenging benchmark datasets demonstrate that the proposed method achieves favorable performances compared with state-of-the-art in literature.
关键点检测的自动稀疏感知识别
我们提出了一种新的稀疏感知关键点检测器(SAKD),通过优化群稀疏编码来定位一组判别关键点。与目前大多数手工制作的关键点检测器受手工定义的局部结构的限制不同,本文提出的方法能够灵活地利用词汇表中视觉原子的组合来开发不同的结构。另一个关键的有价值的属性是它的群稀疏性集中于发现图像中共同的关键点之间的可共享结构模式。这一主要优点有利于定位可重复的关键点,并在图像经历各种变换时抵抗干扰。在四个具有挑战性的基准数据集上进行的大量实验表明,与文献中最先进的方法相比,该方法取得了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信