Robust multiple target tracking under occlusion using fragmented mean shift and Kalman filter

G. Phadke
{"title":"Robust multiple target tracking under occlusion using fragmented mean shift and Kalman filter","authors":"G. Phadke","doi":"10.1109/ICCSP.2011.5739376","DOIUrl":null,"url":null,"abstract":"Object tracking is critical to visual surveillance and activity analysis. The major issue in multiple visual target tracking is occlusion handling. In this paper, we investigate how to improve the robustness of visual tracking method for multiple target tracking with occlusion. Here we propose weighted fragment based mean shift with Kalman filter with the consideration of color features of the target. Discrete wavelet transform is used to detect the target automatically. Inter frame difference of LL-subband is used for detection of the target. Automatic fragments are acquired by calculating the mean and standard deviation of detected target. Here the weighted fragments are derived from the likelihood function of foreground and background of that particular fragment using color histogram. The output of weighted fragmented mean shift is updated with the help of Kalman filter. The Proposed tracking algorithm has been tested on several challenging videos of different situations and compared with mean shift method using Bhattacharyya coefficients and Bhattacharyya distance. Extensive experiments authenticate the robustness and reliability of the proposed method.","PeriodicalId":408736,"journal":{"name":"2011 International Conference on Communications and Signal Processing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Communications and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2011.5739376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Object tracking is critical to visual surveillance and activity analysis. The major issue in multiple visual target tracking is occlusion handling. In this paper, we investigate how to improve the robustness of visual tracking method for multiple target tracking with occlusion. Here we propose weighted fragment based mean shift with Kalman filter with the consideration of color features of the target. Discrete wavelet transform is used to detect the target automatically. Inter frame difference of LL-subband is used for detection of the target. Automatic fragments are acquired by calculating the mean and standard deviation of detected target. Here the weighted fragments are derived from the likelihood function of foreground and background of that particular fragment using color histogram. The output of weighted fragmented mean shift is updated with the help of Kalman filter. The Proposed tracking algorithm has been tested on several challenging videos of different situations and compared with mean shift method using Bhattacharyya coefficients and Bhattacharyya distance. Extensive experiments authenticate the robustness and reliability of the proposed method.
基于碎片均值移位和卡尔曼滤波的多目标鲁棒跟踪
目标跟踪是视觉监视和活动分析的关键。多视觉目标跟踪的主要问题是遮挡处理。在本文中,我们研究了如何提高视觉跟踪方法对多目标遮挡跟踪的鲁棒性。本文提出了一种考虑目标颜色特征的加权片段均值移位算法。采用离散小波变换对目标进行自动检测。利用l -子带的帧间差对目标进行检测。通过计算被探测目标的均值和标准差获得自动碎片。在这里,加权片段是利用颜色直方图从特定片段的前景和背景的似然函数中得到的。利用卡尔曼滤波对加权碎片化均值漂移的输出进行更新。在不同情况下对所提出的跟踪算法进行了测试,并使用Bhattacharyya系数和Bhattacharyya距离与mean shift方法进行了比较。大量的实验验证了该方法的鲁棒性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信