{"title":"Quantum bounded query complexity","authors":"H. Buhrman, W. V. Dam","doi":"10.1109/CCC.1999.766273","DOIUrl":null,"url":null,"abstract":"We combine the classical notions and techniques for bounded query classes with those developed in quantum computing. We give strong evidence that quantum queries to an oracle in the class NP does indeed reduce the query, complexity of decision problems. Under traditional complexity assumptions, we obtain an exponential speedup between the quantum and the classical query complexity of function classes. For decision problems and function classes we obtain the following results: P/sub /spl par///sup NP[2k]//spl sube/EQP/sub /spl par///sup NP[k]/; P/sub /spl par///sup NP[2k+1-2]//spl sube/EQP/sup NP[k]/; FP/sub /spl par///sup NP[2k=1-2]//spl sube/FEQP/sup NP[2k]/; FP/sub /spl par///sup NP/spl sube/FEQP(NP[Olog n)]/. For sets A that are many-one complete for PSPACE or EXP we show that Fp/sup A//spl sube/FEQP/sup A[1]/. Sets A that are many-one complete for PP have the property that FP/sub /spl par///sup A//spl sube/FEQP/sup A[1]/. In general we prove that for any set A there is a set X such that FP/sup A//spl sube/FEQP/sup X[1]/, establishing that no set is superterse in the quantum setting.","PeriodicalId":432015,"journal":{"name":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.1999.766273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
We combine the classical notions and techniques for bounded query classes with those developed in quantum computing. We give strong evidence that quantum queries to an oracle in the class NP does indeed reduce the query, complexity of decision problems. Under traditional complexity assumptions, we obtain an exponential speedup between the quantum and the classical query complexity of function classes. For decision problems and function classes we obtain the following results: P/sub /spl par///sup NP[2k]//spl sube/EQP/sub /spl par///sup NP[k]/; P/sub /spl par///sup NP[2k+1-2]//spl sube/EQP/sup NP[k]/; FP/sub /spl par///sup NP[2k=1-2]//spl sube/FEQP/sup NP[2k]/; FP/sub /spl par///sup NP/spl sube/FEQP(NP[Olog n)]/. For sets A that are many-one complete for PSPACE or EXP we show that Fp/sup A//spl sube/FEQP/sup A[1]/. Sets A that are many-one complete for PP have the property that FP/sub /spl par///sup A//spl sube/FEQP/sup A[1]/. In general we prove that for any set A there is a set X such that FP/sup A//spl sube/FEQP/sup X[1]/, establishing that no set is superterse in the quantum setting.