A Query-Based Summarization Service from Multiple News Sources

Elaheh Shafieibavani, M. Ebrahimi, R. Wong, Fang Chen
{"title":"A Query-Based Summarization Service from Multiple News Sources","authors":"Elaheh Shafieibavani, M. Ebrahimi, R. Wong, Fang Chen","doi":"10.1109/SCC.2016.13","DOIUrl":null,"url":null,"abstract":"It can be time consuming to search Internet news, due to multiple sources reporting repetitive information. Given a query and a set of relevant text articles, query-focused multi-document summarization (QMDS) aims to generate a fluent, well-organized, and compact summary that answers the query. While QMDS helps to summarize search results, most top-performing systems for this purpose remain largely extractive. Extractive summarization extracts a group of sentences and concatenates them. In this paper, we propose a summarization service based on abstractive QMDS using multi-sentence compression (MSC). Our proposed service generates a novel summary representing the gist of the content of the source document(s). Experiments using popular summarization benchmark datasets demonstrate the effectiveness of the proposed service.","PeriodicalId":115693,"journal":{"name":"2016 IEEE International Conference on Services Computing (SCC)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Services Computing (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC.2016.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

It can be time consuming to search Internet news, due to multiple sources reporting repetitive information. Given a query and a set of relevant text articles, query-focused multi-document summarization (QMDS) aims to generate a fluent, well-organized, and compact summary that answers the query. While QMDS helps to summarize search results, most top-performing systems for this purpose remain largely extractive. Extractive summarization extracts a group of sentences and concatenates them. In this paper, we propose a summarization service based on abstractive QMDS using multi-sentence compression (MSC). Our proposed service generates a novel summary representing the gist of the content of the source document(s). Experiments using popular summarization benchmark datasets demonstrate the effectiveness of the proposed service.
基于查询的多新闻源摘要服务
搜索互联网新闻可能会耗费大量时间,因为有多个来源报道重复的信息。给定一个查询和一组相关的文本文章,以查询为中心的多文档摘要(QMDS)旨在生成回答查询的流畅、组织良好和简洁的摘要。虽然QMDS有助于总结搜索结果,但大多数用于此目的的高性能系统在很大程度上仍然是提取的。摘要提取是将一组句子提取出来并将它们连接起来。本文提出了一种基于多句压缩(MSC)的抽象QMDS摘要服务。我们建议的服务生成一个新颖的摘要,表示源文档内容的要点。使用流行的摘要基准数据集进行的实验证明了所提出服务的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信