Elaheh Shafieibavani, M. Ebrahimi, R. Wong, Fang Chen
{"title":"A Query-Based Summarization Service from Multiple News Sources","authors":"Elaheh Shafieibavani, M. Ebrahimi, R. Wong, Fang Chen","doi":"10.1109/SCC.2016.13","DOIUrl":null,"url":null,"abstract":"It can be time consuming to search Internet news, due to multiple sources reporting repetitive information. Given a query and a set of relevant text articles, query-focused multi-document summarization (QMDS) aims to generate a fluent, well-organized, and compact summary that answers the query. While QMDS helps to summarize search results, most top-performing systems for this purpose remain largely extractive. Extractive summarization extracts a group of sentences and concatenates them. In this paper, we propose a summarization service based on abstractive QMDS using multi-sentence compression (MSC). Our proposed service generates a novel summary representing the gist of the content of the source document(s). Experiments using popular summarization benchmark datasets demonstrate the effectiveness of the proposed service.","PeriodicalId":115693,"journal":{"name":"2016 IEEE International Conference on Services Computing (SCC)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Services Computing (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC.2016.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
It can be time consuming to search Internet news, due to multiple sources reporting repetitive information. Given a query and a set of relevant text articles, query-focused multi-document summarization (QMDS) aims to generate a fluent, well-organized, and compact summary that answers the query. While QMDS helps to summarize search results, most top-performing systems for this purpose remain largely extractive. Extractive summarization extracts a group of sentences and concatenates them. In this paper, we propose a summarization service based on abstractive QMDS using multi-sentence compression (MSC). Our proposed service generates a novel summary representing the gist of the content of the source document(s). Experiments using popular summarization benchmark datasets demonstrate the effectiveness of the proposed service.