Efficient Energy Resource Selection in Home Area Sensor Networks using Non Swarm Intelligence Based Discrete Venus Flytrap Search Optimization Algorithm

Sivabalan Settu, R. Ramalingam
{"title":"Efficient Energy Resource Selection in Home Area Sensor Networks using Non Swarm Intelligence Based Discrete Venus Flytrap Search Optimization Algorithm","authors":"Sivabalan Settu, R. Ramalingam","doi":"10.21203/RS.3.RS-230204/V1","DOIUrl":null,"url":null,"abstract":"\n This research work examines the foraging behavior of the Carnivorous plant called Venus flytrap. These plants derive their nutrients from trapping and consuming insects and another arthropod. Unlike swarm behavior, they forage independently and autonomously. Based on this, a new non-swarm intelligence algorithm called Discrete Venus Fly-Trap Search Algorithm (DVFS) is proposed for energy resource selection for sensor nodes in the Home Area Sensor Network (HASN). Discrete Venus Fly-Trap Search Algorithm is a population-based, non-swarm intelligence search algorithm that copycats the foraging behaviors of Venus Fly-Trap Plant. The search performance of DVFS algorithm is studied by simulating in Wireless Sensor Network Toolbox in Matlab2016. The results expose that the proposed algorithm can identify optimal energy resource selection from the energy source station to provide the power supply to the nodes in HASN for the network lifespan increment.","PeriodicalId":156550,"journal":{"name":"Wirel. Pers. Commun.","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wirel. Pers. Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-230204/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research work examines the foraging behavior of the Carnivorous plant called Venus flytrap. These plants derive their nutrients from trapping and consuming insects and another arthropod. Unlike swarm behavior, they forage independently and autonomously. Based on this, a new non-swarm intelligence algorithm called Discrete Venus Fly-Trap Search Algorithm (DVFS) is proposed for energy resource selection for sensor nodes in the Home Area Sensor Network (HASN). Discrete Venus Fly-Trap Search Algorithm is a population-based, non-swarm intelligence search algorithm that copycats the foraging behaviors of Venus Fly-Trap Plant. The search performance of DVFS algorithm is studied by simulating in Wireless Sensor Network Toolbox in Matlab2016. The results expose that the proposed algorithm can identify optimal energy resource selection from the energy source station to provide the power supply to the nodes in HASN for the network lifespan increment.
基于非群体智能的离散捕蝇草搜索优化算法在家庭区域传感器网络中的高效能源选择
这项研究工作考察了一种叫做捕蝇草的食肉植物的觅食行为。这些植物从捕获和消耗昆虫和另一种节肢动物中获取营养。与群体行为不同,它们独立自主地觅食。在此基础上,提出了一种新的非群体智能算法——离散金星捕蝇器搜索算法(DVFS),用于家庭区域传感器网络中传感器节点的能源选择。离散型捕蝇草搜索算法是一种基于种群的、模仿捕蝇草觅食行为的非群体智能搜索算法。在Matlab2016的无线传感器网络工具箱中仿真研究了DVFS算法的搜索性能。结果表明,该算法可以从能源站中识别出最优的能源选择,为网络寿命增量中的节点提供电力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信