On the real-time receding horizon control in harbor defense

Seungho Lee, G. Dullerud, E. Polak
{"title":"On the real-time receding horizon control in harbor defense","authors":"Seungho Lee, G. Dullerud, E. Polak","doi":"10.1109/ACC.2015.7171889","DOIUrl":null,"url":null,"abstract":"In this paper, we develop an receding horizon control (RHC) law for controlling the pursuers in a pursuit-evasion problem arising in a harbor defense scenario and describe its real-time implementation that we apply experimentally to a robotic testbed. Our implementation of the RHC law makes use of a min-max formulation of the underlying optimal problem that must be solved at each sample time, which is solved using the method of outer approximations in conjunction with a phase I-phase II method of feasible directions, in conjunction with a network layer that abstracts each agent. We demonstrate the effectiveness of our implementation using real-time human-computer simulations, and human-robot interaction using a physical testbed comprised of model-sized hovercraft.","PeriodicalId":223665,"journal":{"name":"2015 American Control Conference (ACC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2015.7171889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we develop an receding horizon control (RHC) law for controlling the pursuers in a pursuit-evasion problem arising in a harbor defense scenario and describe its real-time implementation that we apply experimentally to a robotic testbed. Our implementation of the RHC law makes use of a min-max formulation of the underlying optimal problem that must be solved at each sample time, which is solved using the method of outer approximations in conjunction with a phase I-phase II method of feasible directions, in conjunction with a network layer that abstracts each agent. We demonstrate the effectiveness of our implementation using real-time human-computer simulations, and human-robot interaction using a physical testbed comprised of model-sized hovercraft.
港口防御中地平线后退的实时控制
在本文中,我们开发了一个后退地平线控制(RHC)律,用于控制港口防御场景中出现的追捕逃避问题的追捕者,并描述了它的实时实现,我们在机器人测试平台上进行了实验。我们对RHC定律的实现使用了必须在每个样本时间解决的潜在最优问题的最小-最大公式,该公式使用外部近似方法与可行方向的第i阶段第II阶段方法相结合,并结合抽象每个代理的网络层来解决。我们使用实时人机模拟和使用由模型大小的气垫船组成的物理测试平台的人机交互来证明我们实现的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信