Identification of Bacilli Bacteria in Acute Respiratory Infection (ARI) using Learning Vector Quantization

Z. E. Fitri, L. N. Sahenda, P. S. D. Puspitasari, A. M. N. Imron
{"title":"Identification of Bacilli Bacteria in Acute Respiratory Infection (ARI) using Learning Vector Quantization","authors":"Z. E. Fitri, L. N. Sahenda, P. S. D. Puspitasari, A. M. N. Imron","doi":"10.2991/assehr.k.220207.005","DOIUrl":null,"url":null,"abstract":"Two diseases that include Acute Respiratory Infections (ARI) are diphtheria and tuberculosis. Both diseases have a large number of sufferers and can cause extraordinary events (KLB). One of the achievement indicators of infectious disease control and management programs is discovery. However, the limited number of medical analysts causes the discovery process (examination) long and subjective. To help with this problem, a bacillus identification system was created for early detection of Acute Respiratory Infections (ARI). This system is an implementation of computer vision. The data used are preparations of the bacteria Mycobacterium tuberculosis and Corynebacterium diphtheriae obtained at Besar Laboratorium Kesehatan (BBLK) Surabaya. The parameters used are the area, perimeter and shape factor. The Learning Vector Quantization (LVQ) method can classify and identify bacillus bacteria that cause acute respiratory infections with a training accuracy of 97% and a test accuracy of 86% with a learning rate of 0.01 and a reduced learning rate of 0.25.","PeriodicalId":299867,"journal":{"name":"Proceedings of the 2nd International Conference on Social Science, Humanity and Public Health (ICOSHIP 2021)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Social Science, Humanity and Public Health (ICOSHIP 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/assehr.k.220207.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two diseases that include Acute Respiratory Infections (ARI) are diphtheria and tuberculosis. Both diseases have a large number of sufferers and can cause extraordinary events (KLB). One of the achievement indicators of infectious disease control and management programs is discovery. However, the limited number of medical analysts causes the discovery process (examination) long and subjective. To help with this problem, a bacillus identification system was created for early detection of Acute Respiratory Infections (ARI). This system is an implementation of computer vision. The data used are preparations of the bacteria Mycobacterium tuberculosis and Corynebacterium diphtheriae obtained at Besar Laboratorium Kesehatan (BBLK) Surabaya. The parameters used are the area, perimeter and shape factor. The Learning Vector Quantization (LVQ) method can classify and identify bacillus bacteria that cause acute respiratory infections with a training accuracy of 97% and a test accuracy of 86% with a learning rate of 0.01 and a reduced learning rate of 0.25.
应用学习媒介量化方法鉴定急性呼吸道感染(ARI)杆菌
包括急性呼吸道感染在内的两种疾病是白喉和肺结核。这两种疾病都有大量的患者,并可引起特别事件(KLB)。传染病控制和管理项目的成就指标之一是发现。然而,由于医学分析人员数量有限,导致发现过程(检查)漫长而主观。为了解决这个问题,一种用于早期检测急性呼吸道感染(ARI)的芽孢杆菌鉴定系统应运而生。本系统是计算机视觉的一个实现。所使用的数据是在泗水Besar实验室获得的结核分枝杆菌和白喉棒状杆菌的制剂。使用的参数是面积、周长和形状因子。学习向量量化(LVQ)方法可以对引起急性呼吸道感染的芽孢杆菌进行分类识别,训练准确率为97%,测试准确率为86%,学习率为0.01,降低学习率为0.25。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信