Learning Reliable User Representations from Volatile and Sparse Data to Accurately Predict Customer Lifetime Value

Mingzhe Xing, Shuqing Bian, Wayne Xin Zhao, Zhen Xiao, Xinji Luo, Cunxiang Yin, Jing Cai, Yancheng He
{"title":"Learning Reliable User Representations from Volatile and Sparse Data to Accurately Predict Customer Lifetime Value","authors":"Mingzhe Xing, Shuqing Bian, Wayne Xin Zhao, Zhen Xiao, Xinji Luo, Cunxiang Yin, Jing Cai, Yancheng He","doi":"10.1145/3447548.3467079","DOIUrl":null,"url":null,"abstract":"In industry, customer lifetime value (LTV) prediction is a challenging task, since user consumption data is usually volatile, noisy, or sparse. To address these issues, this paper presents a novel Temporal-Structural User Representation (named TSUR) network to predict LTV. We utilize historical revenue time series and user attributes to learn both temporal and structural user representations, respectively. Specifically, the temporal representation is learned with a temporal trend encoder based on a novel multi-channel Discrete Wavelet Transform~(DWT) module, while the structural representation is derived with Graph Attention Network (GAT) on an attribute similarity graph. Furthermore, a novel cluster-alignment regularization method is employed to align and enhance these two kinds of representations. In essence, such a fusion way can be considered as the association of temporal and structural representations in the low-pass representation space, which is also useful to prevent the data noise from being transferred across different views. To our knowledge, it is the first time that temporal and structural user representations are jointly learned for LTV prediction. Extensive offline experiments on two large-scale real-world datasets and online A/B tests have shown the superiority of our approach over a number of competitive baselines.","PeriodicalId":421090,"journal":{"name":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447548.3467079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In industry, customer lifetime value (LTV) prediction is a challenging task, since user consumption data is usually volatile, noisy, or sparse. To address these issues, this paper presents a novel Temporal-Structural User Representation (named TSUR) network to predict LTV. We utilize historical revenue time series and user attributes to learn both temporal and structural user representations, respectively. Specifically, the temporal representation is learned with a temporal trend encoder based on a novel multi-channel Discrete Wavelet Transform~(DWT) module, while the structural representation is derived with Graph Attention Network (GAT) on an attribute similarity graph. Furthermore, a novel cluster-alignment regularization method is employed to align and enhance these two kinds of representations. In essence, such a fusion way can be considered as the association of temporal and structural representations in the low-pass representation space, which is also useful to prevent the data noise from being transferred across different views. To our knowledge, it is the first time that temporal and structural user representations are jointly learned for LTV prediction. Extensive offline experiments on two large-scale real-world datasets and online A/B tests have shown the superiority of our approach over a number of competitive baselines.
从易失性和稀疏数据中学习可靠的用户表示,以准确预测客户终身价值
在行业中,客户生命周期价值(LTV)预测是一项具有挑战性的任务,因为用户消费数据通常是不稳定的、嘈杂的或稀疏的。为了解决这些问题,本文提出了一种新的时间结构用户表示(TSUR)网络来预测LTV。我们利用历史收入时间序列和用户属性分别学习时间和结构用户表示。具体来说,使用基于新型多通道离散小波变换(DWT)模块的时态趋势编码器学习时态表示,使用基于属性相似图的图注意网络(GAT)导出结构表示。在此基础上,采用一种新的聚类对齐正则化方法对这两种表示进行对齐和增强。从本质上讲,这种融合方式可以被认为是低通表示空间中时间表示和结构表示的关联,这也有助于防止数据噪声在不同视图之间传递。据我们所知,这是第一次将时间和结构用户表示联合学习用于LTV预测。在两个大规模真实世界数据集和在线A/B测试上进行的大量离线实验表明,我们的方法优于许多竞争性基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信