An accurate and fast method for eyelid detection

Ahmed A. K. Tahir, Steluta Anghelus
{"title":"An accurate and fast method for eyelid detection","authors":"Ahmed A. K. Tahir, Steluta Anghelus","doi":"10.1504/ijbm.2020.10029783","DOIUrl":null,"url":null,"abstract":"A novel method called refine-connect-extend-smooth (R-C-E-S) for detecting eyelids is presented. It consists of four algorithms, Canny edge detector with Prewitt operator, modified refine edge map (MREM), connect edges-extend (CEE) and smooth curve (SC). The method is not based on pre-assumptions that consider eyelids as parabola or lines and it does not use curve fitting algorithm, therefore sever deviation of the detected eyelid curve from the actual eyelid path is avoided. The method is applied to three types of database, CASIA-V1.0, CASIA-V4.0-Lamp and SDUMLA-HMT. The accuracies for detecting the lower eyelid, upper eyelid and free iris are (93.2%, 99.1%, 96.7%) for CASIA-V1.0, while for CASIA-V4.0-Lamp are (97.6%, 98.3%, 97.8%) and for SDUMLA-HMT are (95.1%, 95.3%, 96.92%). The processing times for detecting single eyelid, both eyelids and free iris are (42 ms, 49 ms, 35 ms) for CASIA-V1.0, while for CASIA-V4.0-Lamp are (23 ms, 26 ms, 21 ms) and for SDUMLA-HMT are (35 ms, 40 ms, 31 ms).","PeriodicalId":262486,"journal":{"name":"Int. J. Biom.","volume":"569 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Biom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijbm.2020.10029783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A novel method called refine-connect-extend-smooth (R-C-E-S) for detecting eyelids is presented. It consists of four algorithms, Canny edge detector with Prewitt operator, modified refine edge map (MREM), connect edges-extend (CEE) and smooth curve (SC). The method is not based on pre-assumptions that consider eyelids as parabola or lines and it does not use curve fitting algorithm, therefore sever deviation of the detected eyelid curve from the actual eyelid path is avoided. The method is applied to three types of database, CASIA-V1.0, CASIA-V4.0-Lamp and SDUMLA-HMT. The accuracies for detecting the lower eyelid, upper eyelid and free iris are (93.2%, 99.1%, 96.7%) for CASIA-V1.0, while for CASIA-V4.0-Lamp are (97.6%, 98.3%, 97.8%) and for SDUMLA-HMT are (95.1%, 95.3%, 96.92%). The processing times for detecting single eyelid, both eyelids and free iris are (42 ms, 49 ms, 35 ms) for CASIA-V1.0, while for CASIA-V4.0-Lamp are (23 ms, 26 ms, 21 ms) and for SDUMLA-HMT are (35 ms, 40 ms, 31 ms).
一种准确、快速的眼睑检测方法
提出了一种新的眼睑检测方法——精细连接-扩展-平滑(R-C-E-S)。该算法包括四种算法:Canny边缘检测和Prewitt算子、改进的精细边缘映射(MREM)、连接边缘扩展(CEE)和平滑曲线(SC)。该方法不基于将眼睑视为抛物线或直线的预先假设,也没有使用曲线拟合算法,因此避免了检测到的眼睑曲线与实际眼睑路径的严重偏差。该方法应用于CASIA-V1.0、CASIA-V4.0-Lamp和SDUMLA-HMT三种数据库。CASIA-V1.0检测下睑、上睑和游离虹膜的准确率分别为(93.2%、99.1%、96.7%),CASIA-V4.0-Lamp检测下睑、上睑和游离虹膜的准确率分别为(97.6%、98.3%、97.8%)和SDUMLA-HMT检测的准确率分别为(95.1%、95.3%、96.92%)。CASIA-V1.0检测单眼皮、双眼皮和游离虹膜的处理时间分别为(42 ms、49 ms、35 ms), CASIA-V4.0-Lamp检测单眼皮、双眼皮和游离虹膜的处理时间分别为(23 ms、26 ms、21 ms)和SDUMLA-HMT检测单眼皮、双眼皮和游离虹膜的处理时间分别为(35 ms、40 ms、31 ms)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信