Wind profiler Doppler power spectrum segmentation using U-Net

Baazil P. Thampy, J. V., A. Kottayil
{"title":"Wind profiler Doppler power spectrum segmentation using U-Net","authors":"Baazil P. Thampy, J. V., A. Kottayil","doi":"10.1109/AICAPS57044.2023.10074415","DOIUrl":null,"url":null,"abstract":"Wind profiler radars can continually and effectively probe the atmosphere to obtain the Doppler power spectrum of ambient air motion. In addition to ambient air motion, the Doppler power spectrum used to get wind estimates may contain atmospheric and non-atmospheric disturbances. The wind estimations might be biased as a result of these disruptions. Accurate detection of ambient air motion, even in the presence of disturbances, is essential to reduce the impact of these biases. The Doppler power spectrum can be segmented using cutting-edge deep learning models to retrieve ambient air motion. In this work, we used one of the finest deep learning models, U-net, to segment the Doppler power spectrum. The proposed method’s performance evaluation shows promising results in segmenting and retrieving ambient air motion.","PeriodicalId":146698,"journal":{"name":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAPS57044.2023.10074415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wind profiler radars can continually and effectively probe the atmosphere to obtain the Doppler power spectrum of ambient air motion. In addition to ambient air motion, the Doppler power spectrum used to get wind estimates may contain atmospheric and non-atmospheric disturbances. The wind estimations might be biased as a result of these disruptions. Accurate detection of ambient air motion, even in the presence of disturbances, is essential to reduce the impact of these biases. The Doppler power spectrum can be segmented using cutting-edge deep learning models to retrieve ambient air motion. In this work, we used one of the finest deep learning models, U-net, to segment the Doppler power spectrum. The proposed method’s performance evaluation shows promising results in segmenting and retrieving ambient air motion.
基于U-Net的风廓线多普勒功率谱分割
风廓线雷达可以连续有效地探测大气,获取环境空气运动的多普勒功率谱。除了环境空气运动外,用于估算风的多普勒功率谱可能包含大气和非大气扰动。由于这些干扰,对风力的估计可能会有偏差。即使在存在干扰的情况下,对环境空气运动的准确检测对于减少这些偏差的影响至关重要。多普勒功率谱可以使用尖端的深度学习模型进行分割,以检索环境空气运动。在这项工作中,我们使用了最好的深度学习模型之一U-net来分割多普勒功率谱。该方法在环境空气运动的分割和检索方面取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信