Carlos Colman Meixner, G. Figueiredo, M. Fiorani, M. Tornatore, B. Mukherjee
{"title":"Resilient cloud network mapping with virtualized BBU placement for cloud-RAN","authors":"Carlos Colman Meixner, G. Figueiredo, M. Fiorani, M. Tornatore, B. Mukherjee","doi":"10.1109/ANTS.2016.7947790","DOIUrl":null,"url":null,"abstract":"Cloud Radio Access Network (C-RAN) will improve mobile radio coordination and resource efficiency by allowing baseband processing unit (BBU) functions to be virtualized and centralized, i.e., deployed in a BBU hotel. We consider a BBU hoteling scheme based on the concept of access cloud network (ACN). An ACN consists of virtualized BBUs (vBBUs) placed in metro cloud data centers (metro DCs). A vBBU is connected to a set of remote radio heads (RRHs). ACN resiliency against network and processing failures is critical for C-RAN deployments. Hence, in this study, we propose three protection approaches: 1+1 ACN protection, 1+1 ACN and vBBU protection, and partial ACN protection. Simulation results show that both 1+1 ACN and 1+1 ACN and vBBU protection requires large capacity for backup to provide 100% survivability for singlelink and single-DC failures. As a result, we suggest a partial ACN protection approach which provides degraded services with only 8% additional network resources.","PeriodicalId":248902,"journal":{"name":"2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTS.2016.7947790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
Cloud Radio Access Network (C-RAN) will improve mobile radio coordination and resource efficiency by allowing baseband processing unit (BBU) functions to be virtualized and centralized, i.e., deployed in a BBU hotel. We consider a BBU hoteling scheme based on the concept of access cloud network (ACN). An ACN consists of virtualized BBUs (vBBUs) placed in metro cloud data centers (metro DCs). A vBBU is connected to a set of remote radio heads (RRHs). ACN resiliency against network and processing failures is critical for C-RAN deployments. Hence, in this study, we propose three protection approaches: 1+1 ACN protection, 1+1 ACN and vBBU protection, and partial ACN protection. Simulation results show that both 1+1 ACN and 1+1 ACN and vBBU protection requires large capacity for backup to provide 100% survivability for singlelink and single-DC failures. As a result, we suggest a partial ACN protection approach which provides degraded services with only 8% additional network resources.