{"title":"Long, Short, Monolithic - The Gate Loop Challenge for GaN Drivers: Invited Paper","authors":"Maik Kaufmann, A. Seidel, B. Wicht","doi":"10.1109/CICC48029.2020.9075937","DOIUrl":null,"url":null,"abstract":"With fast switching GaN any parasitic gate loop inductance degrades the switching performance and may lead to false turn-on as well as gate voltage overshoot. Two approaches to overcome these challenges in driving GaN transistors are discussed in this paper. In a discrete silicon based driver, the gate loop inductance is actively utilized for a resonant gate drive approach. In a second implementation, the gate loop inductance is reduced close to zero by GaN-on-Si monolithic integration of the power transistor and the driver on one die. It includes an integrated supply voltage regulator circuit that generates the gate drive voltage out of the high-voltage switching node. The results show fast and robust switching behavior with minimal ringing.","PeriodicalId":409525,"journal":{"name":"2020 IEEE Custom Integrated Circuits Conference (CICC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC48029.2020.9075937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
With fast switching GaN any parasitic gate loop inductance degrades the switching performance and may lead to false turn-on as well as gate voltage overshoot. Two approaches to overcome these challenges in driving GaN transistors are discussed in this paper. In a discrete silicon based driver, the gate loop inductance is actively utilized for a resonant gate drive approach. In a second implementation, the gate loop inductance is reduced close to zero by GaN-on-Si monolithic integration of the power transistor and the driver on one die. It includes an integrated supply voltage regulator circuit that generates the gate drive voltage out of the high-voltage switching node. The results show fast and robust switching behavior with minimal ringing.