Classification Problem in Imbalanced Datasets

A. Mahani, Ahmed Riad Baba Ali
{"title":"Classification Problem in Imbalanced Datasets","authors":"A. Mahani, Ahmed Riad Baba Ali","doi":"10.5772/intechopen.89603","DOIUrl":null,"url":null,"abstract":"Classification is a data mining task. It aims to extract knowledge from large datasets. There are two kinds of classification. The first one is known as complete classification, and it is applied to balanced datasets. However, when it is applied to imbalanced ones, it is called partial classification or a problem of classification in imbalanced datasets, which is a fundamental problem in machine learning, and it has received much attention. Considering the importance of this issue, a large amount of techniques have been proposed trying to address this problem. These proposals can be divided into three levels: the algorithm level, the data level, and the hybrid level. In this chapter, we will present the classification problem in imbalanced datasets, its domains of application, its appropriate measures of performances, and its approaches and techniques.","PeriodicalId":183051,"journal":{"name":"Recent Trends in Computational Intelligence","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Trends in Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.89603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Classification is a data mining task. It aims to extract knowledge from large datasets. There are two kinds of classification. The first one is known as complete classification, and it is applied to balanced datasets. However, when it is applied to imbalanced ones, it is called partial classification or a problem of classification in imbalanced datasets, which is a fundamental problem in machine learning, and it has received much attention. Considering the importance of this issue, a large amount of techniques have been proposed trying to address this problem. These proposals can be divided into three levels: the algorithm level, the data level, and the hybrid level. In this chapter, we will present the classification problem in imbalanced datasets, its domains of application, its appropriate measures of performances, and its approaches and techniques.
不平衡数据集的分类问题
分类是一项数据挖掘任务。它旨在从大型数据集中提取知识。有两种分类。第一种被称为完全分类,它适用于平衡数据集。然而,当它应用于不平衡数据集时,它被称为部分分类或不平衡数据集的分类问题,这是机器学习中的一个基本问题,受到了广泛的关注。考虑到这个问题的重要性,已经提出了大量的技术来试图解决这个问题。这些建议可以分为三个层次:算法层、数据层和混合层。在本章中,我们将介绍不平衡数据集中的分类问题,它的应用领域,它的适当性能度量,以及它的方法和技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信