Query optimization of distributed pattern matching

Jiewen Huang, K. Venkatraman, D. Abadi
{"title":"Query optimization of distributed pattern matching","authors":"Jiewen Huang, K. Venkatraman, D. Abadi","doi":"10.1109/ICDE.2014.6816640","DOIUrl":null,"url":null,"abstract":"Greedy algorithms for subgraph pattern matching operations are often sufficient when the graph data set can be held in memory on a single machine. However, as graph data sets increasingly expand and require external storage and partitioning across a cluster of machines, more sophisticated query optimization techniques become critical to avoid explosions in query latency. In this paper, we introduce several query optimization techniques for distributed graph pattern matching. These techniques include (1) a System-R style dynamic programming-based optimization algorithm that considers both linear and bushy plans, (2) a cycle detection-based algorithm that leverages cycles to reduce intermediate result set sizes, and (3) a computation reusing technique that eliminates redundant query execution and data transfer over the network. Experimental results show that these algorithms can lead to an order of magnitude improvement in query performance.","PeriodicalId":159130,"journal":{"name":"2014 IEEE 30th International Conference on Data Engineering","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 30th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2014.6816640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

Greedy algorithms for subgraph pattern matching operations are often sufficient when the graph data set can be held in memory on a single machine. However, as graph data sets increasingly expand and require external storage and partitioning across a cluster of machines, more sophisticated query optimization techniques become critical to avoid explosions in query latency. In this paper, we introduce several query optimization techniques for distributed graph pattern matching. These techniques include (1) a System-R style dynamic programming-based optimization algorithm that considers both linear and bushy plans, (2) a cycle detection-based algorithm that leverages cycles to reduce intermediate result set sizes, and (3) a computation reusing technique that eliminates redundant query execution and data transfer over the network. Experimental results show that these algorithms can lead to an order of magnitude improvement in query performance.
分布式模式匹配的查询优化
当图数据集可以保存在单个机器的内存中时,用于子图模式匹配操作的贪心算法通常就足够了。然而,随着图数据集日益扩展,并且需要跨机器集群的外部存储和分区,更复杂的查询优化技术对于避免查询延迟爆炸变得至关重要。本文介绍了分布式图模式匹配的几种查询优化技术。这些技术包括(1)基于System-R风格的动态规划优化算法,该算法考虑了线性和灌木计划,(2)基于循环检测的算法,该算法利用循环来减少中间结果集的大小,以及(3)计算重用技术,该技术消除了冗余的查询执行和网络上的数据传输。实验结果表明,这些算法可以使查询性能有一个数量级的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信