Adaptive Inverse Control under (h,ø)-Entropy Criterion

Badong Chen, Jinchun Hu, Hongbo Li, Zeng-qi Sun
{"title":"Adaptive Inverse Control under (h,ø)-Entropy Criterion","authors":"Badong Chen, Jinchun Hu, Hongbo Li, Zeng-qi Sun","doi":"10.1109/ICCIS.2006.252273","DOIUrl":null,"url":null,"abstract":"Recent research suggested that the error entropy (EE) criteria could be used to achieve a better error distribution in estimation, adaptation and learning. In this paper, we formulated the adaptive inverse control under a generalized error entropy criterion, i.e. (h, ø)-entropy criterion, and derived the associated error-entropy minimization algorithm. Several detailed schemes of adaptive filtering and inverse control under (h, ø)-entropy criterion were also presented. Finally, a simple simulation example has illustrated the effectiveness and advantages of this new method.","PeriodicalId":296028,"journal":{"name":"2006 IEEE Conference on Cybernetics and Intelligent Systems","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2006.252273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recent research suggested that the error entropy (EE) criteria could be used to achieve a better error distribution in estimation, adaptation and learning. In this paper, we formulated the adaptive inverse control under a generalized error entropy criterion, i.e. (h, ø)-entropy criterion, and derived the associated error-entropy minimization algorithm. Several detailed schemes of adaptive filtering and inverse control under (h, ø)-entropy criterion were also presented. Finally, a simple simulation example has illustrated the effectiveness and advantages of this new method.
(h,ø)-熵准则下的自适应逆控制
最近的研究表明,错误熵(error entropy, EE)准则可以在估计、自适应和学习中实现更好的误差分布。本文给出了广义误差熵准则下的自适应逆控制,即(h, ø)-熵准则,并推导了相应的误差熵最小化算法。给出了(h, ø)-熵准则下的自适应滤波和逆控制的具体方案。最后通过一个简单的仿真实例说明了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信