Towards Better Content Visibility in Video Recommender Systems

Nalin Chakoo, Rahul Gupta, Jayaprada Hiremath
{"title":"Towards Better Content Visibility in Video Recommender Systems","authors":"Nalin Chakoo, Rahul Gupta, Jayaprada Hiremath","doi":"10.1109/FCST.2008.36","DOIUrl":null,"url":null,"abstract":"Current recommender systems based on filtering techniques implement a rather limited model for video content visibility. Most of these systems fall short to provide visual precursor to the user and concentrate only on making more accurate predictions; however, a few of them that focus their attention to the aspect of multimedia (video) item visibility do so in a limited scope. In this paper, we address this problem and propose to augment the existing recommender systems with a dynamic user-based scheme to provide users with superior, high-quality recommendation formulation and customized visibility of the recommended item. The domain of content visibility is dynamically crafted using the existing recommender system algorithm.","PeriodicalId":206207,"journal":{"name":"2008 Japan-China Joint Workshop on Frontier of Computer Science and Technology","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Japan-China Joint Workshop on Frontier of Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCST.2008.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Current recommender systems based on filtering techniques implement a rather limited model for video content visibility. Most of these systems fall short to provide visual precursor to the user and concentrate only on making more accurate predictions; however, a few of them that focus their attention to the aspect of multimedia (video) item visibility do so in a limited scope. In this paper, we address this problem and propose to augment the existing recommender systems with a dynamic user-based scheme to provide users with superior, high-quality recommendation formulation and customized visibility of the recommended item. The domain of content visibility is dynamically crafted using the existing recommender system algorithm.
视频推荐系统中更好的内容可见性
当前基于过滤技术的推荐系统实现了一个相当有限的视频内容可见性模型。这些系统大多无法为用户提供视觉先兆,只专注于做出更准确的预测;然而,他们中的一些人把注意力集中在多媒体(视频)项目可见性方面,在有限的范围内这样做。在本文中,我们解决了这个问题,并提出用一个动态的基于用户的方案来增强现有的推荐系统,为用户提供卓越的、高质量的推荐公式和定制的推荐项目可见性。内容可见性领域是使用现有的推荐系统算法动态构建的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信