Quantization theory and EC-CELP advantages at low bit rates

M. Foodeei, E. Dubois
{"title":"Quantization theory and EC-CELP advantages at low bit rates","authors":"M. Foodeei, E. Dubois","doi":"10.1109/WITS.1994.513914","DOIUrl":null,"url":null,"abstract":"The goal of this work is to analyze the advantages of the recently introduced entropy-constrained code-excited linear predictive (EC-CELP) quantization. The analysis is at low rates in comparison with other EC quantization schemes. Based on N-th order rate-distortion function (RDF), EC quantization theory, and empirical methods, RDF memory gain and empirical space-filling gain (dimensionality N) at low bit rates are defined and calculated. These gains categorize and help us analyze and compare the available coding gains for various EC coders for a given rate and delay (N).","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The goal of this work is to analyze the advantages of the recently introduced entropy-constrained code-excited linear predictive (EC-CELP) quantization. The analysis is at low rates in comparison with other EC quantization schemes. Based on N-th order rate-distortion function (RDF), EC quantization theory, and empirical methods, RDF memory gain and empirical space-filling gain (dimensionality N) at low bit rates are defined and calculated. These gains categorize and help us analyze and compare the available coding gains for various EC coders for a given rate and delay (N).
量化理论和EC-CELP在低比特率下的优势
本文的目的是分析最近引入的熵约束码激发线性预测(EC-CELP)量化的优点。与其他EC量化方案相比,分析的速率较低。基于N阶率失真函数(RDF)、EC量化理论和经验方法,定义并计算了低比特率下的RDF存储增益和经验空间填充增益(N维)。这些增益分类并帮助我们分析和比较给定速率和延迟(N)下各种EC编码器的可用编码增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信