Q-Networks with Dynamically Loaded Biases for Personalization

Ján Magyar, P. Sinčák
{"title":"Q-Networks with Dynamically Loaded Biases for Personalization","authors":"Ján Magyar, P. Sinčák","doi":"10.1109/SAMI50585.2021.9378651","DOIUrl":null,"url":null,"abstract":"Personalization is ever more prevalent in digital systems in various application domains. Reinforcement learning is a method often applied to adjust a system's behavior to the user's preferences, but there are a number of hurdles when applying it in this context. We propose a novel neural network architecture for reinforcement learning agents specifically tailored to support personalization - Dynamically Loaded Biases Q-Network. We test our architecture on two environments simulating a personalization task and show that it can simultaneously learn a general behavior and adjust it to different environments.","PeriodicalId":402414,"journal":{"name":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI50585.2021.9378651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Personalization is ever more prevalent in digital systems in various application domains. Reinforcement learning is a method often applied to adjust a system's behavior to the user's preferences, but there are a number of hurdles when applying it in this context. We propose a novel neural network architecture for reinforcement learning agents specifically tailored to support personalization - Dynamically Loaded Biases Q-Network. We test our architecture on two environments simulating a personalization task and show that it can simultaneously learn a general behavior and adjust it to different environments.
带有动态加载偏差的q网络
个性化在各种应用领域的数字系统中越来越普遍。强化学习是一种经常用于根据用户偏好调整系统行为的方法,但在这种情况下应用它存在许多障碍。我们提出了一种新的神经网络架构,用于专门为支持个性化定制的强化学习代理——动态加载偏差q网络。我们在模拟个性化任务的两个环境中测试了我们的架构,并表明它可以同时学习一般行为并调整它以适应不同的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信