Robust Group-Level Inference in Neuroimaging Genetic Studies

Virgile Fritsch, Benoit Da Mota, G. Varoquaux, V. Frouin, E. Loth, J. Poline, B. Thirion
{"title":"Robust Group-Level Inference in Neuroimaging Genetic Studies","authors":"Virgile Fritsch, Benoit Da Mota, G. Varoquaux, V. Frouin, E. Loth, J. Poline, B. Thirion","doi":"10.1109/PRNI.2013.15","DOIUrl":null,"url":null,"abstract":"Gene-neuroimaging studies involve high-dimensional data that have a complex statistical structure and that are likely to be contaminated with outliers. Robust, outlier-resistant methods are an alternative to prior outliers removal, which is a difficult task under high-dimensional unsupervised settings. In this work, we consider robust regression and its application to neuroimaging through an example gene-neuroimaging study on a large cohort of 300 subjects. We use randomized brain parcellation to sample a set of adapted low-dimensional spatial models to analyse the data. Combining this approach with robust regression in an analysis method that we show is outperforming state-of-the-art neuroimaging analysis methods.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Gene-neuroimaging studies involve high-dimensional data that have a complex statistical structure and that are likely to be contaminated with outliers. Robust, outlier-resistant methods are an alternative to prior outliers removal, which is a difficult task under high-dimensional unsupervised settings. In this work, we consider robust regression and its application to neuroimaging through an example gene-neuroimaging study on a large cohort of 300 subjects. We use randomized brain parcellation to sample a set of adapted low-dimensional spatial models to analyse the data. Combining this approach with robust regression in an analysis method that we show is outperforming state-of-the-art neuroimaging analysis methods.
神经影像学遗传研究中稳健的群体水平推断
基因-神经成像研究涉及高维数据,这些数据具有复杂的统计结构,并且可能受到异常值的污染。鲁棒的、抗离群值的方法是先验离群值去除的替代方法,在高维无监督设置下,先验离群值去除是一项困难的任务。在这项工作中,我们考虑稳健回归及其在神经影像学中的应用,通过对300名受试者进行基因-神经影像学研究的例子。我们使用随机的大脑分割来采样一组适应的低维空间模型来分析数据。将这种方法与鲁棒回归分析方法相结合,我们展示的分析方法优于最先进的神经成像分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信