{"title":"Real-time flocking of multiple-quadrotor system of systems","authors":"O. Saif, I. Fantoni, A. Zavala‐Río","doi":"10.1109/SYSOSE.2015.7151908","DOIUrl":null,"url":null,"abstract":"The subject of this paper is a real-time flocking control of multiple quadrotors in the context of system of systems. We believe that the most challenging aspect in multiple-quadrotor control is the interaction between quadrotors through sensing and preserving safe interdistances. The final objective is a collision-free flock of multiple quadrotors while navigating to a predefined destination. For this purpose, we develop control laws that are based on the consensus theory introduced by Olfati-Saber in [1]. Our control laws are designed in order to be compatible with experimental implementation and nonlinear model of quadrotors. Simulations and experiments using four quadrotors validate the performance of the proposed control laws. The convergence of interdistances between quadrotors to a desired value are maintained while navigating to a destination point.","PeriodicalId":399744,"journal":{"name":"2015 10th System of Systems Engineering Conference (SoSE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th System of Systems Engineering Conference (SoSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSOSE.2015.7151908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
The subject of this paper is a real-time flocking control of multiple quadrotors in the context of system of systems. We believe that the most challenging aspect in multiple-quadrotor control is the interaction between quadrotors through sensing and preserving safe interdistances. The final objective is a collision-free flock of multiple quadrotors while navigating to a predefined destination. For this purpose, we develop control laws that are based on the consensus theory introduced by Olfati-Saber in [1]. Our control laws are designed in order to be compatible with experimental implementation and nonlinear model of quadrotors. Simulations and experiments using four quadrotors validate the performance of the proposed control laws. The convergence of interdistances between quadrotors to a desired value are maintained while navigating to a destination point.