Physis: An implicitly parallel programming model for stencil computations on large-scale GPU-accelerated supercomputers

N. Maruyama, Tatsuo Nomura, Kento Sato, S. Matsuoka
{"title":"Physis: An implicitly parallel programming model for stencil computations on large-scale GPU-accelerated supercomputers","authors":"N. Maruyama, Tatsuo Nomura, Kento Sato, S. Matsuoka","doi":"10.1145/2063384.2063398","DOIUrl":null,"url":null,"abstract":"This paper proposes a compiler-based programming framework that automatically translates user-written structured grid code into scalable parallel implementation code for GPU-equipped clusters. To enable such automatic translations, we design a small set of declarative constructs that allow the user to express stencil computations in a portable and implicitly parallel manner. Our framework translates the user-written code into actual implementation code in CUDA for GPU acceleration and MPI for node-level parallelization with automatic optimizations such as computation and communication overlapping. We demonstrate the feasibility of such automatic translations by implementing several structured grid applications in our framework. Experimental results on the TSUBAME2.0 GPU-based supercomputer show that the performance is comparable as hand-written code and good strong and weak scalability up to 256 GPUs.","PeriodicalId":358797,"journal":{"name":"2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"173","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063384.2063398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 173

Abstract

This paper proposes a compiler-based programming framework that automatically translates user-written structured grid code into scalable parallel implementation code for GPU-equipped clusters. To enable such automatic translations, we design a small set of declarative constructs that allow the user to express stencil computations in a portable and implicitly parallel manner. Our framework translates the user-written code into actual implementation code in CUDA for GPU acceleration and MPI for node-level parallelization with automatic optimizations such as computation and communication overlapping. We demonstrate the feasibility of such automatic translations by implementing several structured grid applications in our framework. Experimental results on the TSUBAME2.0 GPU-based supercomputer show that the performance is comparable as hand-written code and good strong and weak scalability up to 256 GPUs.
物理:用于大规模gpu加速超级计算机的模板计算的隐式并行编程模型
本文提出了一种基于编译器的编程框架,可以自动将用户编写的结构化网格代码转换为配备gpu的集群的可伸缩并行实现代码。为了实现这种自动翻译,我们设计了一小组声明性构造,允许用户以可移植和隐式并行的方式表达模板计算。我们的框架将用户编写的代码转换为CUDA中的实际实现代码,用于GPU加速和MPI,用于节点级并行化,并具有自动优化,如计算和通信重叠。我们通过在我们的框架中实现几个结构化网格应用程序来演示这种自动转换的可行性。在基于TSUBAME2.0 gpu的超级计算机上的实验结果表明,该算法的性能与手写代码相当,并且具有良好的强弱可扩展性,可支持256个gpu。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信