Visual speech synthesis from 3D mesh sequences driven by combined speech features

Felix Kuhnke, J. Ostermann
{"title":"Visual speech synthesis from 3D mesh sequences driven by combined speech features","authors":"Felix Kuhnke, J. Ostermann","doi":"10.1109/ICME.2017.8019546","DOIUrl":null,"url":null,"abstract":"Given a pre-registered 3D mesh sequence and accompanying phoneme-labeled audio, our system creates an animatable face model and a mapping procedure to produce realistic speech animations for arbitrary speech input. Mapping of speech features to model parameters is done using random forests for regression. We propose a new speech feature based on phonemic labels and acoustic features. The novel feature produces more expressive facial animation and it robustly handles temporal labeling errors. Furthermore, by employing a sliding window approach to feature extraction, the system is easy to train and allows for low-delay synthesis. We show that our novel combination of speech features improves visual speech synthesis. Our findings are confirmed by a subjective user study.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Given a pre-registered 3D mesh sequence and accompanying phoneme-labeled audio, our system creates an animatable face model and a mapping procedure to produce realistic speech animations for arbitrary speech input. Mapping of speech features to model parameters is done using random forests for regression. We propose a new speech feature based on phonemic labels and acoustic features. The novel feature produces more expressive facial animation and it robustly handles temporal labeling errors. Furthermore, by employing a sliding window approach to feature extraction, the system is easy to train and allows for low-delay synthesis. We show that our novel combination of speech features improves visual speech synthesis. Our findings are confirmed by a subjective user study.
由组合语音特征驱动的三维网格序列视觉语音合成
给定预注册的3D网格序列和伴随的音素标记音频,我们的系统创建了一个可动画的面部模型和一个映射程序,为任意语音输入生成逼真的语音动画。语音特征到模型参数的映射使用随机森林进行回归。我们提出了一种基于音位标签和声学特征的语音特征。该新特征产生了更具表现力的面部动画,并能鲁棒地处理时间标记错误。此外,通过采用滑动窗口方法进行特征提取,系统易于训练并允许低延迟合成。我们表明,我们的新语音特征组合提高了视觉语音合成。我们的发现得到了主观用户研究的证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信