Magneto approach to QoS monitoring

S. Handurukande, Szymon Fedor, Stefan Wallin, Martin Zach
{"title":"Magneto approach to QoS monitoring","authors":"S. Handurukande, Szymon Fedor, Stefan Wallin, Martin Zach","doi":"10.1109/INM.2011.5990693","DOIUrl":null,"url":null,"abstract":"Quality of Service (QoS) monitoring of end-user services is an integral and indispensable part of service management. However in large, heterogeneous and complex networks where there are many services, many types of end-user devices, and huge numbers of subscribers, it is not trivial to monitor QoS and estimate the status of Service Level Agreements (SLAs). Furthermore, the overwhelming majority of end-terminals do not provide precise information about QoS which aggravates the difficulty of keeping track of SLAs. In this paper, we describe a solution that combines a number of techniques in a novel and unique way to overcome the complexity and difficulty of QoS monitoring. Our solution uses a model driven approach to service modeling, data mining techniques on small sample sets of terminal QoS reports (from “smarter” end-user devices), and network level key performance indicators (N-KPIs) from probes to address this problem. Service modeling techniques empowered with a modeling engine and a purpose-built language hide the complexity of SLA status monitoring. The data mining technique uses its own engine and learnt data models to estimate QoS values based on N-KPIs, and feeds the estimated values to the modeling engine to calculate SLAs. We describe our solution, the prototype and experimental results in the paper.","PeriodicalId":433520,"journal":{"name":"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INM.2011.5990693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Quality of Service (QoS) monitoring of end-user services is an integral and indispensable part of service management. However in large, heterogeneous and complex networks where there are many services, many types of end-user devices, and huge numbers of subscribers, it is not trivial to monitor QoS and estimate the status of Service Level Agreements (SLAs). Furthermore, the overwhelming majority of end-terminals do not provide precise information about QoS which aggravates the difficulty of keeping track of SLAs. In this paper, we describe a solution that combines a number of techniques in a novel and unique way to overcome the complexity and difficulty of QoS monitoring. Our solution uses a model driven approach to service modeling, data mining techniques on small sample sets of terminal QoS reports (from “smarter” end-user devices), and network level key performance indicators (N-KPIs) from probes to address this problem. Service modeling techniques empowered with a modeling engine and a purpose-built language hide the complexity of SLA status monitoring. The data mining technique uses its own engine and learnt data models to estimate QoS values based on N-KPIs, and feeds the estimated values to the modeling engine to calculate SLAs. We describe our solution, the prototype and experimental results in the paper.
磁控方法的QoS监控
终端用户服务的服务质量(QoS)监控是服务管理中不可缺少的重要组成部分。然而,在大型、异构和复杂的网络中,存在许多服务、许多类型的最终用户设备和大量的订阅者,监控QoS和估计服务水平协议(sla)的状态并非易事。此外,绝大多数终端不提供关于QoS的精确信息,这加剧了跟踪sla的困难。在本文中,我们描述了一种解决方案,它以一种新颖而独特的方式结合了许多技术来克服QoS监控的复杂性和困难。我们的解决方案使用模型驱动的方法进行服务建模,对终端QoS报告的小样本集(来自“更智能”的终端用户设备)进行数据挖掘技术,以及来自探测器的网络级关键性能指标(n - kpi)来解决这个问题。使用建模引擎和专用语言的服务建模技术隐藏了SLA状态监视的复杂性。数据挖掘技术利用自己的引擎和学习到的数据模型,基于n - kpi估计QoS值,并将估计值提供给建模引擎计算sla。文中介绍了我们的解决方案、样机和实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信