Clause Identification Using Entropy Guided Transformation Learning

Eraldo Rezende Fernandes, B. '. Pires, C. D. Santos, R. Milidiú
{"title":"Clause Identification Using Entropy Guided Transformation Learning","authors":"Eraldo Rezende Fernandes, B. '. Pires, C. D. Santos, R. Milidiú","doi":"10.1109/STIL.2009.10","DOIUrl":null,"url":null,"abstract":"Entropy Guided Transformation Learning (ETL) is a machine learning strategy that extends Transformation Based Learning by providing automatic template generation. In this work, we propose an ETL approach to the clause identification task. We use the English language corpus of the CoNLL'2001 shared task. The achieved performance is not competitive yet, since the F1 of the ETL based system is 80.55, whereas the state-of-the-art system performance is 85.03. Nevertheless, our modeling strategy is very simple, when compared to the state-of-the-art approaches. These first findings indicate that the ETL approach is a promising one for this task. One can enhance its performance by incorporating problem specific knowledge. Additional features can be easily introduced in the ETL model.","PeriodicalId":265848,"journal":{"name":"2009 Seventh Brazilian Symposium in Information and Human Language Technology","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh Brazilian Symposium in Information and Human Language Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STIL.2009.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Entropy Guided Transformation Learning (ETL) is a machine learning strategy that extends Transformation Based Learning by providing automatic template generation. In this work, we propose an ETL approach to the clause identification task. We use the English language corpus of the CoNLL'2001 shared task. The achieved performance is not competitive yet, since the F1 of the ETL based system is 80.55, whereas the state-of-the-art system performance is 85.03. Nevertheless, our modeling strategy is very simple, when compared to the state-of-the-art approaches. These first findings indicate that the ETL approach is a promising one for this task. One can enhance its performance by incorporating problem specific knowledge. Additional features can be easily introduced in the ETL model.
基于熵引导变换学习的子句识别
熵导转换学习(ETL)是一种机器学习策略,通过提供自动模板生成来扩展基于转换的学习。在这项工作中,我们提出了一种用于子句识别任务的ETL方法。我们使用CoNLL'2001共享任务的英语语料库。实现的性能还没有竞争力,因为基于ETL的系统的F1是80.55,而最先进的系统性能是85.03。然而,与最先进的方法相比,我们的建模策略非常简单。这些最初的发现表明,ETL方法对于这项任务是一个很有前途的方法。可以通过结合特定问题的知识来增强其性能。在ETL模型中可以很容易地引入其他特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信