Local scale controlled anisotropic diffusion with local noise estimate for image smoothing and edge detection

P. Liang
{"title":"Local scale controlled anisotropic diffusion with local noise estimate for image smoothing and edge detection","authors":"P. Liang","doi":"10.1109/ICCV.1998.710718","DOIUrl":null,"url":null,"abstract":"A novel local scale controlled piecewise linear diffusion for selective smoothing and edge detection is presented. The diffusion stops at the place and time determined by the minimum reliable local scale and a spatial variant, anisotropic local noise estimate. It shows anisotropic, nonlinear diffusion equation using diffusion coefficients/tensors that continuously depend on the gradient is not necessary to achieve sharp, distorted, stable edge detection across many scales. The new diffusion is anisotropic and asymmetric only at places it needs to be, i.e., at significant edges. It not only does not diffuse across significant edges, but also enhances edges. It advances geometry-driven diffusion because it is a piecewise linear model rather than a full nonlinear model, thus it is simple to implement and analyze, and avoids the difficulties and problems associated with nonlinear diffusion. It advances local scale control by introducing spatial variant, anisotropic local noise estimation, and local stopping of diffusion. The original local scale control was based on the unrealistic assumption of uniformly distributed noise independent of the image signal. The local noise estimate significantly improves local scale control.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

A novel local scale controlled piecewise linear diffusion for selective smoothing and edge detection is presented. The diffusion stops at the place and time determined by the minimum reliable local scale and a spatial variant, anisotropic local noise estimate. It shows anisotropic, nonlinear diffusion equation using diffusion coefficients/tensors that continuously depend on the gradient is not necessary to achieve sharp, distorted, stable edge detection across many scales. The new diffusion is anisotropic and asymmetric only at places it needs to be, i.e., at significant edges. It not only does not diffuse across significant edges, but also enhances edges. It advances geometry-driven diffusion because it is a piecewise linear model rather than a full nonlinear model, thus it is simple to implement and analyze, and avoids the difficulties and problems associated with nonlinear diffusion. It advances local scale control by introducing spatial variant, anisotropic local noise estimation, and local stopping of diffusion. The original local scale control was based on the unrealistic assumption of uniformly distributed noise independent of the image signal. The local noise estimate significantly improves local scale control.
提出了一种新的局部尺度控制分段线性扩散算法,用于选择性平滑和边缘检测。扩散停止在由最小可靠局部尺度和空间变异的各向异性局部噪声估计确定的地点和时间。它表明,使用连续依赖于梯度的扩散系数/张量的各向异性非线性扩散方程对于实现跨多个尺度的尖锐、扭曲、稳定的边缘检测是不必要的。新的扩散是各向异性和不对称的,只有在它需要的地方,即在重要的边缘。它不仅不会在重要的边缘上扩散,而且会增强边缘。它推进了几何驱动扩散,因为它是一个分段线性模型而不是一个全非线性模型,因此它易于实现和分析,避免了非线性扩散的困难和问题。通过引入空间变分、各向异性局部噪声估计和局部停止扩散等方法,推进了局部尺度控制。原来的局部尺度控制是基于不现实的假设,即均匀分布的噪声独立于图像信号。局部噪声估计显著改善了局部尺度控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信